# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4999 | 0 | 0.9979 | Dissemination Routes of Carbapenem and Pan-Aminoglycoside Resistance Mechanisms in Hospital and Urban Wastewater Canalizations of Ghana. Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana). Wastewater samples were collected from the drainage and canalizations before and after three hospitals and one urban waste treatment plant (UWTP). From all carbapenem/pan-aminoglycoside-resistant bacteria, 36 isolates were selected to determine bacterial species and phenotypical resistance profiles. Nanopore sequencing was used to screen resistance genes and plasmids, whereas, sequence types, resistome and plasmidome contents, pan-genome structures, and resistance gene variants were analyzed with Illumina sequencing. The combination of these sequencing data allowed for the resolution of the resistance gene-carrying platforms. Hospitals and the UWTP collected genetic and bacterial elements from community wastewater and amplified successful resistance gene-bacterium associations, which reached the community canalizations. Uncommon carbapenemase/β-lactamase gene variants, like bla(DIM-1), and novel variants, including bla(VIM-71), bla(CARB-53), and bla(CMY-172), were identified and seem to spread via clonal expansion of environmental Pseudomonas spp. However, bla(NDM-1), bla(CTX-M-15), and armA genes, among others, were associated with MGEs that allowed for their dissemination between environmental and clinical bacterial hosts. In conclusion, untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics. Urgent actions must be taken in wastewater management in LMICs in order to delay AMR expansion. IMPORTANCE Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. The lack of knowledge is even greater when referring to low- and middle-income countries, where there is an absence of accurate sanitary systems. Furthermore, the combination of short- and long-read sequencing has surpassed former technical limitations, allowing the complete characterization of resistance genes, mobile genetic platforms, plasmids, and bacteria. The present study deciphered the multiple elements and routes involved in AMR dynamics in wastewater canalizations and, therefore, in the local population of Tamale, providing the basis to adopt accurate control measures to preserve and promote public health. | 2022 | 35103490 |
| 2590 | 1 | 0.9978 | Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship. | 2021 | 34579656 |
| 2587 | 2 | 0.9978 | Prevalence of multi-drug resistant bacteria associated with foods and drinks in Nigeria (2015-2020): A systematic review. Foods are essential vehicles in human exposure to antibiotic resistant bacteria which serve as reservoirs for resistance genes and a rising food safety concern. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally and poses a serious concern to human health. This study was designed to synthesize data regarding the prevalence of MDR bacteria associated with foods and drinks sold within Nigeria in order to contribute to the existing findings in this area. A comprehensive literature search on the prevalence of multi-drug resistant bacteria associated with foods and drinks in Nigeria from 2015 to 2020 was conducted using three databases; PubMed, Science Direct and Scopus. After screening and selection, 26 out of 82 articles were used for the qualitative data synthesis. Of the total of one thousand three hundred and twenty-six MDR bacteria reportedly isolated in all twenty-six articles, the highest prevalence (660) was observed in drinks, including water, while the lowest (20) was observed in the article which combined results for both protein and vegetable-based foods. Escherichia sp. had the most frequency of occurrence, appearing as MDR bacteria in ten out of the twenty-six articles. Salmonella sp. appeared as MDR in seven out of the twenty-six articles included in this study, in all seven articles where it was reported, it had the highest percentage (85.4%) prevalence as MDR bacteria. Public health personnel need to ensure critical control during the production and handling of foods and drinks, as well as create more awareness on proper hygienic practices to combat the spread of MDR bacteria becoming a growing food safety issue (Zurfluh et al., 2019; Mesbah et al., 2017; Campos et al., 2019). Foods can be contaminated by different means, including exposure to irrigation water, manure, feces or soil with pathogenic bacteria. Foods can also become contaminated as they are harvested, handled after harvest or during processing if food safety standards are not correctly applied (Meshbah et al., 2017). Food-borne diseases caused by resistant organisms are one of the most important public health problems as they contribute to the risk of development of antibiotic resistance in the food production chain (Hehempour-Baltork et al., 2019). Apart from pathogenic bacteria causing foodborne diseases, foods that are raw or not processed following standard procedures can introduce several antibiotic-resistant bacteria (ARB) to consumers (Gekemidis et al., 2018). Antibiotic resistance, though harbored in non-pathogenic bacteria, can potentially be spread through horizontal gene transfer to other species including opportunistic pathogens that are present in the environment or after consumption of ARB-contaminated foods. When ARB-contaminated foods are consumed, the spread of antibiotic resistant genes may affect the gut microbiome thereby contributing to the pool of antibiotic-resistance genes (ARG) in the human gut (Gekemidis et al, 2018). MDR bacteria have been defined as bacteria that are resistant to at least one antimicrobial agent present in three or more antimicrobial classes (Sweeny et al., 2018). There has been an increase in drug resistance in pathogens isolated from food for human consumption with species of Escherichia coli and Salmonella enterica being considered among the most important pathogens due to their ability to effect zoonotic transfer of resistant genes (Canton et al., 2018; Maneilla-Becerra et al., 2019). However, other pathogens, such as Vibrio spp., some species of Aeromonas, spores of Clostridium botulinum type F, and Campylobacter, have been linked to food-borne diseases in humans who have consumed seafood or other animal foods (Maneilla-Becerra et al., 2019). Some other resistant bacteria associated with foods include Staphylococcus aureus, Listeria spp., and Shigella spp. (Maneilla-Becerra et al., 2019) This study was therefore designed to synthesize data (2015-2020) regarding the prevalence of MDR bacteria associated with foods and drinks sold within Nigeria in order to contribute to the existing findings in this area. | 2021 | 35018289 |
| 5117 | 3 | 0.9977 | Metagenomic sequencing of mpox virus clade Ib lesions identifies possible bacterial and viral co-infections in hospitalized patients in eastern DRC. Mpox is an emerging zoonotic disease that caused two public health emergencies of international concern within two years. Less is known about the interplay of microbial organisms in mpox lesions which could result in superinfections that exacerbate outcomes or delay recovery. We utilized a unified metagenomic sequencing approach involving slow-speed centrifugation and differential lysis on 19 mpox lesion swabs of hospitalized patients in South Kivu province (eastern DRC) to characterize bacteria, antimicrobial resistance genes, mpox virus (MPXV), and viral co-infections. High-quality MPXV whole-genome sequences were obtained until a Ct value of 27. Furthermore, co-infections with other clinically relevant viruses, such as varicella zoster virus and herpes simplex virus-2, were detected and confirmed by real-time PCR. In addition, metagenomic sequence analysis of the bacterial content showed the presence of bacteria associated with skin and soft tissue infection in 10 of the 19 samples analyzed. These bacteria had a high abundance of resistance genes, with possible implications for antimicrobial treatment based on the predicted antimicrobial resistance. In conclusion, we report the presence of bacterial and viral pathogens in mpox lesions and detection of widespread resistance genes to the standard antibiotic treatment. The possibility of a co-infection, including antimicrobial resistance, should be considered when discussing treatment options, along with the determination of the case-fatality ratio.IMPORTANCEThe mpox virus clade Ib lineage emerged in the eastern Democratic Republic of the Congo owing to continuous human-to-human transmission in a vulnerable patient population. A major challenge of this ongoing outbreak is its occurrence in regions with severely limited healthcare infrastructure. As a result, less is known about co-infections in affected patients. Identifying and characterizing pathogens, including their antimicrobial resistance, is crucial for reducing infection-related complications and improving antimicrobial stewardship. In this study, we applied a unified metagenomics approach to detect and characterize bacterial and viral co-infections in mpox lesions of hospitalized mpox patients in the eastern DRC. | 2025 | 40445195 |
| 2500 | 4 | 0.9977 | The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO. | 2023 | 36241158 |
| 6602 | 5 | 0.9977 | Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Antibiotic resistance is a well-documented global health challenge that disproportionately impacts low- and middle-income countries. In 2019, the number of deaths attributed to and associated with antibiotic resistance in Western Sub-Saharan Africa was approximately 27 and 115 per 100,000, respectively, higher than in other regions worldwide. Extensive research has consistently confirmed the persistent presence and spread of antibiotic resistance in hospitals, among livestock, within food supply chains, and across various environmental contexts. This review documents the environmental risk factors contributing to the spread of antibiotic resistance in West Africa. We collected studies from multiple West African countries using the Web of Science and PubMed databases. We screened them for factors associated with antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Our findings indicate that antibiotic resistance remains a significant concern in West Africa, with environmental pollution and waste management identified as major factors in the proliferation of antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Additional contributing factors include poor hygiene, the use of antibiotics in agriculture, aquaculture, and animal farming, and the transmission of antibiotic resistance within hospital settings. Unfortunately, the lack of comprehensive genetic characterization of antibiotic-resistant bacteria and resistance genes hinders a thorough understanding of this critical issue in the region. Since antibiotic resistance transcends national borders and can spread within and between countries, it is essential to understand the environmental risk factors driving its dissemination in West African countries. Such understanding will be instrumental in developing and recommending effective strategies nationally and internationally to combat antibiotic resistance. | 2025 | 40284787 |
| 2586 | 6 | 0.9976 | A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach. | 2025 | 40426503 |
| 6601 | 7 | 0.9976 | Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Antimicrobial resistance (AMR) presents a global health challenge, necessitating comprehensive surveillance and intervention strategies. Wastewater-based epidemiology (WBE) is a promising tool that can be utilized for AMR monitoring by offering population-level insights into microbial dynamics and resistance gene dissemination in communities. This review (n = 29 papers) examines the current landscape of utilizing WBE for AMR surveillance with a focus on methodologies, findings, and gaps in understanding. Reported methods from the reviewed literature included culture-based, PCR-based, whole genome sequencing, mass spectrometry, bioinformatics/metagenomics, and antimicrobial susceptibility testing to identify and measure antibiotic-resistant bacteria and antimicrobial resistance genes (ARGs) in wastewater, as well as liquid chromatography-tandem mass spectrometry to measure antibiotic residues. Results indicate Escherichia coli, Enterococcus spp., and Pseudomonas spp. are the most prevalent antibiotic-resistant bacterial species with hospital effluent demonstrating higher abundances of clinically relevant resistance genes including bla, bcr, qnrS, mcr, sul1, erm, and tet genes compared to measurements from local treatment plants. The most reported antibiotics in influent wastewater across studies analyzed include azithromycin, ciprofloxacin, clindamycin, and clarithromycin. The influence of seasonal variation on the ARG profiles of communities differed amongst studies indicating additional factors hold significance when examining the conference of AMR within communities. Despite these findings, knowledge gaps remain, including longitudinal studies in multiple and diverse geographical regions and understanding co-resistance mechanisms in relation to the complexities of population contributors to AMR. This review underscores the urgent need for collaborative and interdisciplinary efforts to safeguard public health and preserve antimicrobial efficacy. Further investigation on the use of WBE to understand these unique population-level drivers of AMR is advised in a proposed framework to inform best practice approaches moving forward. | 2025 | 41011405 |
| 4997 | 8 | 0.9976 | Isolation and Molecular Characterization of Antimicrobial-Resistant Bacteria from Vegetable Foods. Antimicrobial resistance (AMR) poses a growing threat to global health, and its spread through the food chain is gaining increasing attention. While AMR in food of animal origin has been extensively studied, less is known about its prevalence in plant-based foods, particularly fresh and ready-to-eat (RTE) vegetables. This study investigated the occurrence of antimicrobial-resistant bacteria in fresh and RTE vegetables. Isolates were subjected to antimicrobial susceptibility testing and molecular analyses for the characterization of antimicrobial resistance genes (ARGs). A significant proportion of samples were found to harbor antimicrobial-resistant bacteria, including multidrug-resistant strains. Several ARGs, including those encoding extended-spectrum β-lactamases (ESBLs) and resistance to critically important antimicrobials, were detected. The findings point to environmental contamination-potentially originating from wastewater reuse and agricultural practices-as a likely contributor to AMR dissemination in vegetables. The presence of antimicrobial-resistant bacteria and ARGs in fresh produce raises concerns about food safety and public health. The current regulatory framework lacks specific criteria for monitoring AMR in vegetables, highlighting the urgent need for surveillance programs and risk mitigation strategies. This study contributes to a better understanding of AMR in the plant-based food sector and supports the implementation of a One Health approach to address this issue. | 2025 | 40732728 |
| 6604 | 9 | 0.9976 | The spread of antimicrobial resistance in the aquatic environment from faecal pollution: a scoping review of a multifaceted issue. Antimicrobial resistance (AMR) is a major global health concern accelerated by the misuse and mismanagement of antibiotics in clinical and veterinary settings, leading to longer treatment times, increased costs and greater mortality rates. The environment can play a major role as a source and disseminator of AMR, with faecal pollution, from both anthropogenic and non-anthropogenic sources making a significant contribution. The review aimed to identify how faecal pollution contributes to AMR in surface water, focusing on current methods of source tracking faecal pollution. The databases used were Medline Ovid® and Scopus. From the search, 744 papers from January 2020 to November 2023 were identified, and after the screening, 33 papers were selected that reported on AMR, aquatic environments and faecal pollution and were published in English. The studies were from six different continents, most were from Europe and Asia indicating faecal pollution is influenced by spatiotemporal differences such as population and sanitation infrastructure. Multiple different methodologies were used with a lack of standardised methods making comparability challenging. All studies identified AMR strains of faecal indicator bacteria showing resistance to a wide variety of antibiotics, particularly beta-lactams and tetracyclines. Few studies investigated mobile gene elements with class 1 integrons being the most frequently studied. Wastewater treatment plants were significant contributors, releasing large amounts of AMR bacteria into the environment. Environmental factors such as seasonal differences, temperature, rainfall and UV exposure, along with local antibiotic usage influenced the local resistome. Animals, both wild and domestic, introduced antimicrobial resistance genes and potential pathogens into the aquatic environment. Overall, faecal pollution is a complicated issue with multiple factors contributing to and facilitating the spread of AMR. Standardisation of methods and surveillance, robust wastewater management and further research into AMR dissemination are needed to address the human health, animal health and environmental concerns. | 2025 | 40131552 |
| 3190 | 10 | 0.9976 | Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. Higher usage of antimicrobial agents in both healthcare facilities and the communities has resulted in an increased spread of resistant bacteria. However, the improved infection prevention and control practices may also contribute to decreasing antimicrobial resistance (AMR). In the present study, wastewater-based epidemiology (WBE) approach was applied to explore the link between COVID-19 and the community usage of antimicrobials, as well as the prevalence of resistance genes. Longitudinal study has been conducted to monitor the levels of 50 antimicrobial agents (AAs), 24 metabolites, 5 antibiotic resistance genes (ARGs) and class 1 integrons (intI 1) in wastewater influents in 4 towns/cities over two years (April 2020 - March 2022) in the South-West of England (a total of 1,180 samples collected with 87,320 individual AA measurements and 8,148 ARG measurements). Results suggested higher loads of AAs and ARGs in 2021-22 than 2020-21, with beta-lactams, quinolones, macrolides and most ARGs showing statistical differences. In particular, the intI 1 gene (a proxy of environmental ARG pollution) showed a significant increase after the ease of the third national lockdown in England. Positive correlations for all quantifiable parent AAs and metabolites were observed, and consumption vs direct disposal of unused AAs has been identified via WBE. This work can help establish baselines for AMR status in communities, providing community-wide surveillance and evidence for informing public health interventions. Overall, studies focused on AMR from the start of the pandemic to the present, especially in the context of environmental settings, are of great importance to further understand the long-term impact of the pandemic on AMR. | 2024 | 38692256 |
| 4979 | 11 | 0.9976 | Emerging threat: Antimicrobial resistance proliferation during epidemics - A case study of the SARS-CoV-2 pandemic in South Brazil. The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum β-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health. | 2024 | 38581873 |
| 6686 | 12 | 0.9976 | The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts. | 2025 | 40001375 |
| 6578 | 13 | 0.9976 | Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Fresh produce, when consumed raw, can be a source of exposure to antimicrobial residues, antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) of clinical importance. This review aims to determine: (1) the presence and abundance of antimicrobial residues, ARB and ARGs in fresh agricultural products sold in retail markets and consumed raw; (2) associated health risks in humans; and (3) pathways through which fresh produce becomes contaminated with ARB/ARGs. We searched the Ovid Medline, Web of Science and Hinari databases as well as grey literature, and identified 40 articles for inclusion. All studies investigated the occurrence of multidrug-resistant bacteria, and ten studies focused on ARGs in fresh produce, while none investigated antimicrobial residues. The most commonly observed ARB were E. coli (42.5%) followed by Klebsiella spp. (22.5%), and Salmonella spp. (20%), mainly detected on lettuce. Twenty-five articles mentioned health risks from consuming fresh produce but none quantified the risk. About half of the articles stated produce contamination occurred during pre- and post-harvest processes. Our review indicates that good agricultural and manufacturing practices, behavioural change communication and awareness-raising programs are required for all stakeholders along the food production and consumption supply chain to prevent ARB/ARG exposure through produce. | 2021 | 35010620 |
| 6652 | 14 | 0.9976 | Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China. Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for controlling antimicrobial resistance in healthcare settings at an administrative level. | 2015 | 26038766 |
| 5008 | 15 | 0.9976 | Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. BACKGROUND: The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY: The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the (bla)CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION: The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making. | 2020 | 32762743 |
| 1866 | 16 | 0.9975 | Drivers of the emergence and dissemination of high-risk resistance genes in cattle farm. Extended spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales (CPE) are recognized by WHO as critical concerns. The high cephalosporin resistance rate in a cattle farm in 2018 prompted us to conduct long-term (2019-2023) and extensive monitoring to explore risk factors for the import and transmission of ESBLs and CPE in this farm. Among 1288 samples from cattle, the environment, milk, and biological vectors, 48.8 % carried bla(CTX-M)-positive Enterobacterales with bla(CTX-M-55) being dominant (76.4 %), and bla(NDM-5)-positive strains emerged in 2022 with a 1.9 % detection rate. bla(CTX-M-55) and bla(NDM-5) were likely introduced through various routes, especially wild birds, and have persisted due to overuse of cephalosporins in the farm. The spread of these genes was driven by the horizontal transmission of IncHI2 and IncX3 plasmids and clonal dissemination of certain clones. Cross-regional and cross-border transmission of bla(CTX-M-55)- and/or bla(NDM-5)-bearing bacteria and plasmids possibly occurred via wild birds, animal trade, and other means. Our findings suggest that the import, persistence, and dissemination of these genes within and beyond this farm, were fueled by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to prevent the spread of resistance genes as part of a holistic One Health strategy. ENVIRONMENTAL IMPLICATION: The high prevalence and long-term persistence of extended-spectrum β-lactamases and the emergence of carbapenemases in cattle and the environment signify a critical risk of transmitting high-risk resistance genes, posing a significant threat to human health. Consequently, bacteria carrying these genes in animal farms should be regarded as "hazardous materials". Import, persistence, and dissemination of these genes within and beyond this farm were exacerbated by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to mitigate the environmental risks associated with gene transmission as part of a comprehensive One Health strategy. | 2025 | 39899930 |
| 6626 | 17 | 0.9975 | Multidrug-resistant pathogens in the food supply. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world. | 2015 | 25621383 |
| 6586 | 18 | 0.9975 | Proton pump inhibitors increase the risk of carbapenem-resistant Enterobacteriaceae colonization by facilitating the transfer of antibiotic resistance genes among bacteria in the gut microbiome. Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis. | 2024 | 38634770 |
| 6603 | 19 | 0.9975 | Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as bla(TEM), sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers. | 2023 | 37394072 |