# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9811 | 0 | 0.9931 | "Infectious Supercarelessness" in Discussing Antibiotic-Resistant Bacteria. Many bacterial pathogens are exhibiting resistance to increasing numbers of antibiotics making it much more challenging to treat the infections caused by these microbes. In many reports in the media and perhaps even in discussions among physicians and biomedical scientists, these bacteria are frequently referred to as "bugs" with the prefix "super" appended. This terminology has a high potential to elicit unjustified inferences and fails to highlight the broader evolutionary context. Understanding the full range of biological and evolutionary factors that influence the spread and outcomes of infections is critical to formulating effective individual therapies and public health interventions. Therefore, more accurate terminology should be used to refer these multidrug-resistant bacteria. | 2016 | 28174759 |
| 8183 | 1 | 0.9929 | Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed. | 1993 | 15463748 |
| 9173 | 2 | 0.9928 | Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution. | 2023 | 37095190 |
| 8161 | 3 | 0.9927 | Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies. | 2025 | 40914328 |
| 9174 | 4 | 0.9927 | Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings. | 2023 | 37268007 |
| 8158 | 5 | 0.9927 | Nanobioconjugates: Weapons against Antibacterial Resistance. The increase in drug resistance in pathogenic bacteria is emerging as a global threat as we swiftly edge toward the postantibiotic era. Nanobioconjugates have gained tremendous attention to treat multidrug-resistant (MDR) bacteria and biofilms due to their tunable physicochemical properties, drug targeting ability, enhanced uptake, and alternate mechanisms of drug action. In this review, we highlight the recent advances made in the use of nanobioconjugates to combat antibacterial resistance and provide crucial insights for designing nanomaterials that can serve as antibacterial agents for nanotherapeutics, nanocargos for targeted antibiotic delivery, or both. Also discussed are different strategies for treating robust biofilms formed by bacteria. | 2020 | 35019602 |
| 6672 | 6 | 0.9926 | Antibiotic resistance in bacteria - an emerging public health problem. The discovery and eventual introduction of anti-microbial agents to clinical medicine was one of the greatest medical triumphs of the twentieth century that revolutionized the treatment of bacterial diseases. However, the gradual emergence of populations of antibiotic-resistant bacteria resulting from use, misuse and outright abuse of antibiotics has today become a major public health problem of global proportions. This review paper examines the origins and molecular epidemiology of resistance genes, global picture of antibacterial resistance, factors that favour its spread, strategies for its control, problems of control and the consequences of failure to contain antibiotic resistance in bacteria. | 2003 | 27528961 |
| 8177 | 7 | 0.9926 | Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance. | 2023 | 38283841 |
| 9177 | 8 | 0.9925 | Multitarget Approaches against Multiresistant Superbugs. Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them. | 2020 | 32156116 |
| 9183 | 9 | 0.9925 | Overcoming Bacteriophage Resistance in Phage Therapy. Antibiotic resistance among pathogenic bacteria is one of the most severe global challenges. It is predicted that over ten million lives will be lost annually by 2050. Phage therapy is a promising alternative to antibiotics. However, the ease of development of phage resistance during therapy is a concern. This review focuses on the possible ways to overcome phage resistance in phage therapy. | 2024 | 37966611 |
| 9172 | 10 | 0.9924 | These Are the Genes You're Looking For: Finding Host Resistance Genes. Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications. | 2021 | 33004258 |
| 8176 | 11 | 0.9924 | Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems. | 2021 | 34307323 |
| 8178 | 12 | 0.9924 | Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies. | 2024 | 38510041 |
| 9185 | 13 | 0.9923 | The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival. | 2021 | 33670836 |
| 9810 | 14 | 0.9923 | Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill. | 2023 | 39816646 |
| 8160 | 15 | 0.9923 | Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation. | 2024 | 37497706 |
| 9808 | 16 | 0.9923 | Understanding Recent Developments in Colistin Resistance: Mechanisms, Clinical Implications, and Future Perspectives. Colistin resistance, driven by chromosomal mutations and the spread of plasmid-mediated MCR genes, has emerged as a critical challenge in combating multidrug-resistant Gram-negative bacteria. This resistance compromises the efficacy of colistin, leading to higher treatment failure rates, prolonged hospitalizations, and increased mortality. Recent studies have highlighted key mechanisms, including lipid A modifications, that enable bacteria to evade colistin's effects. The global spread of MCR genes exacerbates the issue, underlining the need for improved diagnostics and rapid detection of resistant strains to prevent adverse patient outcomes. To combat this growing threat, a multifaceted approach is essential, involving enhanced antimicrobial stewardship, stricter infection control measures, and continued research into alternative therapies and diagnostic methods. Collaborative efforts from researchers, healthcare providers, policymakers, and the pharmaceutical industry are crucial to preserving colistin's effectiveness and mitigating the broader impact on public health. | 2025 | 41148650 |
| 9442 | 17 | 0.9923 | Antibiotic resistance. Antibiotic resistance poses serious challenges to health and national security, and policy changes will be required to mitigate the consequences of antibiotic resistance. Resistance can arise in disease-causing bacteria naturally, or it can be deliberately introduced to a biological weapon. In either case, life-saving drugs are rendered ineffective. Resistant bacterial infections are difficult to treat, and there are few new antibiotics in the drug development pipeline. This article describes how antibiotic resistance affects health and national security, how bacteria become antibiotic resistant, and what should be done now so antibiotics will be available to save lives in the future. | 2009 | 20028245 |
| 9445 | 18 | 0.9922 | Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a highly infectious disease and worldwide health problem. Based on the WHO TB report, 9 million active TB cases are emerging, leading to 2 million deaths each year. The recent emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains emphasizes the necessity to improve novel therapeutic plans. Among the various developing antibacterial approaches, phage therapy is thought to be a precise hopeful resolution. Mycobacteriophages are viruses that infect bacteria such as Mycobacterium spp., containing the M. tuberculosis complex. Phages and phage-derived proteins can act as promising antimicrobial agents. Also, phage cocktails can broaden the spectrum of lysis activity against bacteria. Recent researches have also shown the effective combination of antibiotics and phages to defeat the infective bacteria. There are limitations and concerns about phage therapy. For example, human immune response to phage therapy, transferring antibiotic resistance genes, emerging resistance to phages, and safety issues. So, in the present study, we introduced mycobacteriophages, their use as therapeutic agents, and their advantages and limitations as therapeutic applications. | 2022 | 36550444 |
| 6682 | 19 | 0.9922 | Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Antibiotic resistance is a massive problem rising constantly and spreading rapidly since the past decade. The major underlying mechanism responsible for this problem is an overuse or severe misuse of antibiotics. Regardless of this emerging global threat, antibiotics are still being widely used, not only for treatment of human infections, but also to a great extent in agriculture, livestock and animal husbandry. If the current scenario persists, we might enter into a post-antibiotic era where drugs might not be able to treat even the simplest of infections. This review discusses the current status of antibiotic utilization and molecular basis of antibiotic resistance mechanisms acquired by bacteria, along with the modes of transmittance of the resultant resistant genes into human pathogens through their cycling among different ecosystems. The main focus of the article is to provide an insight into the different molecular and other strategies currently being studied worldwide for their use as an alternate to antibiotics with an overall aim to overcome or minimize the global problem of antibiotic resistance. | 2021 | 34841321 |