CONSTANTS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
786100.9780The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg(2+) levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer.202234482079
783610.9779Efficient Degradation of Intracellular Antibiotic Resistance Genes by Photosensitized Erythrosine-Produced (1)O(2). Intracellular antibiotic resistance genes (iARGs) constitute the important part of wastewater ARGs and need to be efficiently removed. However, due to the dual protection of intracellular DNA by bacterial membranes and the cytoplasm, present disinfection technologies are largely inefficient in iARG degradation. Herein, we for the first time found that erythrosine (ERY, an edible dye) could efficiently degrade iARGs by producing abundant (1)O(2) under visible light. Seven log antibiotic-resistant bacteria were inactivated within only 1.5 min, and 6 log iARGs were completely degraded within 40 min by photosensitized ERY (5.0 mg/L). A linear relationship was established between ARG degradation rate constants and (1)O(2) concentrations in the ERY photosensitizing system. Surprisingly, a 3.2-fold faster degradation of iARGs than extracellular ARGs was observed, which was attributed to the unique indirect oxidation of iARGs induced by (1)O(2). Furthermore, ERY photosensitizing was effective for iARG degradation in real wastewater and other photosensitizers (including Rose Bengal and Phloxine B) of high (1)O(2) yields could also achieve efficient iARG degradation. The findings increase our knowledge of the iARG degradation preference by (1)O(2) and provide a new strategy of developing technologies with high (1)O(2) yield, like ERY photosensitizing, for efficient iARG removal.202337531556
783120.9778Integration of nanowire-confined electroporation of antibiotic-resistant bacteria and electroactivation of peracetic acid for eliminating intracellular resistance genes. Antimicrobial resistance is one of the most substantial challenges for global public health. To address the inefficient elimination of intracellular resistance genes (i-ARGs) in antibiotic-resistant bacteria (ARB) by peracetic acid (PAA) oxidation, we developed an integration strategy (NW-EP/EA) of nanowire-confined electroporation (NW-EP) of ARB cells and nanowire-confined electroactivation (NW-EA) of PAA with a sequential oxidation-reduction process. The locally enhanced electric field and electrocatalytic activity over NW tips prompted the formation of electroporation pores on ARB cells and the generation of reactive ⋅OH and RO⋅ radicals by PAA electroactivation. The NW-EP/EA with Pd-coated TiO(2)NW cathode with atomic H* evolution exhibited 0.6 -2.8-log higher i-ARG removal than the pristine TiO(2)NW cathode, especially achieving ∼5.0-log i-ARG removal (99.999 %) at 4.0 V and 2.0 mM PAA with ∼4.1-log synergistic effect and ∼10 times lower energy consumption as compared with the individual NW-EP (∼0.32-log and 52.1 %) and PAA (∼0.56-log and 74.4 %). For the sequential oxidation-reduction process, the electrooxidative activation of PAA on TiO(2)NW anode produced H(+) ions, ⋅OH and RO⋅ radicals for enlarging electroporation pores, and the generated H(+) ions promoted the evolution of atomic H* and electroreduction of PAA on subsequent Pd-TiO(2)NW cathode for further facilitating ARB cell damages, i-ARG leakage and degradation. The effective i-ARGs removal and HGT inhibition in tap water suggested the great application potentials of NW-EP/EA in the control of ARGs dissemination risks in drinking water.202540907311
786030.9776Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment.202439197284
786740.9773The removal of antibiotic resistant bacteria and antibiotic resistance genes by sulfidated nanoscale zero-valent iron activating periodate: Efficacy and mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have drawn much more attention due to their high risk on human health and ecosystem. In this study, the performance of sulfidated nanoscale zero-valent iron (S-nZVI)/periodate (PI) system toward ARB inactivation and ARGs removal was systematically investigated. The S-nZVI/PI system could realize the complete inactivation of 1 × 10(8) CFU/mL kanamycin, ampicillin, and tetracycline-resistant E. coli HB101 within 40 min, meanwhile, possessed the ability to remove the intracellular ARGs (iARGs) (including aphA, tetA, and tnpA) carried by E. coli HB101. Specifically, the removal of aphA, tetA, and tnpA by S-nZVI/PI system after 40 min reaction was 0.31, 0.47, and 0.39 log(10)copies/mL, respectively. The reactive species attributed to the E. coli HB101 inactivation were HO(•) and O(2)(•-), which could cause the destruction of E. coli HB101 morphology and enzyme system (such as superoxide dismutase and catalase), the loss of intracellular substances, and the damage of iARGs. Moreover, the influence of the dosage of PI and S-nZVI, the initial concentration of E. coli HB101, as well as the co-existing substance (such as HCO(3)(-), NO(3)(-), and humic acid (HA)) on the inactivation of E. coli HB101 and its corresponding iARGs removal was also conducted. It was found that the high dosage of PI and S-nZVI and the low concentration of E. coli HB101 could enhance the disinfection performance of S-nZVI/PI system. The presence of HCO(3)(-), NO(3)(-), and HA in S-nZVI/PI system showed inhibiting role on the inactivation of E. coli HB101 and its corresponding iARGs removal. Overall, this study demonstrates the superiority of S-nZVI/PI system toward ARB inactivation and ARGs removal.202337544470
785950.9771Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction. Based on the efficiency of the catalytic ozonation techniques (HDWS+O(3) and MnFe(2)O(4) @SBC+O(3)) in enhancing the sludge dewaterability, the effectiveness in synchronized abatement antibiotics and antibiotic resistance genes (ARGs) was conducted to determine. The results revealed that catalytic ozonation conditioning altered the distribution of target antibiotics (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) in the dewatered filtrate, the dewatered sludge cake and the extra-microcolony/cellular polymers (EMPS/ECPS) layers, achieving the redistribution from solid-phase adsorption to liquid-phase dissolution. The total degradation rate was over 90% for TC and OTC, 72-78% for NOR and OFL; the abatement efficiency of eleven ARGs reached 1.47-3.01 log and 1.64-3.59 log, respectively, and more than four eARGs were eliminated. The effective abatement of the absolute abundance of Mobile genetic elements (MGEs) (0.91-1.89 log) demonstrated that catalytic ozonation conditioning could also significantly inhibit horizontal gene transfer (HGT). The abundance of resistant bacteria was greatly reduced and the signal transduction of the typical ARGs host bacteria was inhibited. The highly reactive oxidation species (ROS) generated were responsible for the abatement of antibiotics and ARGs. These findings provided new insights into the sludge conditioning for ideal and synchronized reduction in volume and hazardousness by catalytic ozonation processes in sludge treatment.202437944236
787660.9769Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.202336871701
783270.9768Reduction of antibiotics and antibiotic resistance genes in simulated-sunlight-supported counter-diffusion bacteria-Algae biofilms: Interface properties and functional gene responses. A novel bacteria-algae symbiotic counter-diffusion biofilm system integrated within simulated-sunlight (designated UV-MABAR) was engineered to simultaneously address antibiotic residuals and antibiotic resistance genes (ARGs) while maintaining functional microbial consortia under simulated solar irradiation. The non-algal control system (UV-MABR) demonstrated elevated repulsion energy barriers accompanied by significant suppression of ATP synthase (p < 0.01) and DNA repair-related gene clusters, leading to biofilm homeostasis disruption and subsequent sulfamethoxazole (SMX) effluent accumulation peaking at 138.11±2.34 μg/L. In contrast, the UV-MABAR configuration exhibited dynamic quenching of tyrosine-associated fluorescence moieties within extracellular polymeric substances, thereby diminishing complexation potential with SMX aromatic rings and achieving 70.75 %±3.21 % abiotic photodegradation efficiency, which substantially curtailed ARG proliferation pathways, promoting a significant downregulation of sul1 (-1.9 log(2) fold-change) and sul2 (-1.1 log(2) fold-change) expression compared to conventional MABR controls. Besides, algal in UV-MABAR attenuated the irradiation-induced α-helix/(β-sheet + random coil) conformational shift, moderating biofilm matrix compaction. Crucially, algal proliferation up-regulated bacterial recA expression (1.7-fold increase), thereby preserving catabolic gene integrity and preventing endogenous substances release. These protective measures kept effluent concentrations of SMX, NH(4)(+)-N, total nitrogen, and COD in UV-MABAR at 19.84 μg/L, 3.88 mg/L, 12.76 mg/L, and 34.97 mg/L, respectively, during 150 days of operation.202540738088
784880.9765Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS(2)@GO-Based Heterogeneous Photo-Fenton Process. The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS(2)) on graphene oxide (FeS(2)@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS(2)@GO catalyst (0.25 mg/L) and H(2)O(2) (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO(•)), superoxide radicals (O(2)(• -)), singlet oxygen ((1)O(2)). These findings highlight that the synthesized FeS(2)@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants.202235759741
788390.9764Anammox biofilm system under the stress of Hg(II): Nitrogen removal performance, microbial community dynamic and resistance genes expression. The existence of heavy metals in wastewater has obtained more attention due to its high toxicity and non-degradability. In this study, we investigated the changes of anaerobic ammonium oxidation (Anammox) system under long-term invasion of Hg(Ⅱ). The results indicated that the total nitrogen removal efficiency (TNRE) dropped to around 55 % as Hg(Ⅱ) concentration went up to 20 mg L(-1). But the functional bacteria rapidly developed some resistant abilities and maintained a stable TNRE of 65 % till the end of test. The maximum relative expression fold change of merA, merB, merD and merR were 468.8476, 23.7383, 5.0321 and 15.2514 times, respectively. The high positive correlation between the expression abundance of metal resistance genes and the concentrations of Hg(Ⅱ) revealed the resistant mechanisms of microorganisms to heavy metals. Moreover, the protective strategy based on extracellular polymeric substances also contributed to the stability of Anammox system.202032315795
7792100.9764Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. The research aimed to remove antibiotic resistance by the simultaneous use of UV irradiation and chlorine (UV/chlorine). The inactivations of tetracycline resistant bacteria (TRB) during chlorination, UV irradiation, and UV/chlorine was investigated and compared with those of amoxicillin resistant bacteria (AmRB). Similar examination was also conducted for comparing the removals of their resistant genes (i.e., tetM and blaTem). The removals of antibiotic resistance highly depended on chlorine doses and UV intensities. The sufficient chlorine dose (20 mg.L(-1)) in the chlorination and the UV/chlorine completely inactivated TRB and AmRB (>7.3 log), while the UV irradiation could not achieve the complete disinfection. Microorganisms resistant to different antibiotics exhibit different susceptibility to the disinfection processes. The removals of antibiotic resistant genes (i.e., tetM and blaTem) were more difficult than those of TRB and AmRB. The UV/chlorine was the greatest process for tetM and blaTem removals, followed by chlorination and UV irradiation, respectively. Chlorination decreased the tetM and blaTem by 0.40-1.45 log and 1.04-2.45 log, respectively. The blaTem gene was highly reactive to chlorine, compared with tetM. The UV irradiation caused the tetM and blaTem reductions by 0.32-0.91 log and 0.59-0.96 log, respectively. The UV/chlorine improved the tetM and blaTem removals by 0.98-3.20 log and 1.28-3.36 log, respectively. The •OH contributed to the fraction of tetM and blaTem removals by 48% and 19%, respectively. The effect of reactive chlorine species on the tetM and blaTem removals was minor. The pseudo 1st-order kinetic constants (k') for tetM and blaTem removals by the UV/chlorine were highest. The •OH enhanced the k' values by 120% and 20% for the tetM and blaTem removals, respectively. The study showed the potential use of UV/chlorine for controlling antibiotic resistance.202133059146
7862110.9764Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are widespread in urban wastewater treatment plants (UWTPs). In this research, a horizontal transfer model of recipient (Pseudomonas. HLS-6) and donor (Escherichia coli DH5α carries RP4 plasmid) was constructed to explore the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the efficiency of plasmid-mediated horizontal transfer. When the S/Fe was 0.1, the inactivation efficiency of 1120 mg/L S-nZVI on the donor and recipient bacteria were 2.36 ± 0.03 log and 3.50 ± 0.17 log after 30 min, respectively (initial ARB concentration ≈ 5 ×10(7) CFU/mL). Effects of treatment time, S/Fe molar ratio, S-nZVI dosage and initial bacterial concentration were systemically studied. S-nZVI treatment could increase the extracellular alkaline phosphatase and malondialdehyde content of the ARB, cause oxidative stress in the bacteria, destroy the cell structure and damage the intracellular DNA. This study provided evidence and insights into possible underlying mechanisms for reducing conjugative transfer, such as hindering cell membrane repair, inducing the overproduction of reactive oxygen species, inhibiting the SOS response, reducing the expression of ARGs and related transfer genes. S-nZVI could inhibit the gene conjugative transfer while inactivating the ARB. The findings provided an alternative method for controlling antibiotic resistance.202235334272
7865120.9764Inactivation of antibiotic resistant bacteria by Fe(3)O(4) @MoS(2) activated persulfate and control of antibiotic resistance dissemination risk. Antibiotic resistance poses a global environmental challenge that jeopardizes human health and ecosystem stability. Antibiotic resistant bacteria (ARB) significantly promote the spreading and diffusion of antibiotic resistance. This study investigated the efficiency and mechanism of inactivating tetracycline-resistant Escherichia coli (TR E. coli) using Fe(3)O(4) @MoS(2) activated persulfate (Fe(3)O(4) @MoS(2)/PS). Under optimized conditions (200 mg/L Fe(3)O(4) @MoS(2), 4 mM PS, 35 °C), TR E. coli (∼7.5 log CFU/mL) could be fully inactivated within 20 min. The primary reactive oxygen species (ROS) responsible for TR E. coli inactivation in the Fe(3)O(4) @MoS(2)/PS system were hydroxyl radicals (•OH) and superoxide radicals (•O(2)(-)). Remarkably, the efflux pump protein was targeted and damaged by the generated ROS during the inactivation process, resulting in cell membrane rupture and efflux of cell content. Additionally, the horizontal transmission ability of residual antibiotic resistance genes (ARGs) harboring in the TR E. coli was also reduced after the inactivation treatment. This study offers an efficient approach for TR E. coli inactivation and substantial mitigation of antibiotic resistance dissemination risk.202438286046
7828130.9763Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.202438669989
7866140.9763Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. The inactivation of a gram-negative sulfonamide antibiotic resistant bacteria (ARB) HLS.6 and removal of intracellular antibiotic resistance gene (ARG, sul1) and class I integrase gene (intI1) by nanoscale zero-valent iron (nZVI) and sulfide-modified nZVI (S-nZVI) with different S/Fe molar ratios were investigated in this study. The S-nZVI with high sulfur content (S/Fe = 0.05, 0.1, 0.2) was superior to nZVI and the treatment effect was best when S/Fe was 0.1. The ARB (2 × 10(7) CFU/mL) could be completely inactivated by 1.12 g/L of S-nZVI (S/Fe = 0.1) within 15 min, and the removal rates of intracellular sul1 and intI1 reached up to 4.39 log and 4.67 log at 60 min, respectively. Quenching experiments and flow cytometry proved that reactive oxygen species and adsorption were involved in the ARB inactivation and target genes removal. Bacterial death and live staining experiments and transmission electron microscopy showed that the ARB cell structure and intracellular DNA were severely damaged after S-nZVI treatment. This study provided a potential alternative method for controlling the antibiotic resistance in aquatic environment.202032585519
7885150.9762Susceptibility, resistance and resilience of anammox biomass to nanoscale copper stress. The increasing use of engineered nanoparticles (NPs) poses an emerging challenge to biological wastewater treatment. The long-term impact of CuNPs on anaerobic ammonium oxidation (anammox) process was firstly investigated in this study. The nitrogen removal capacity of anammox reactor was nearly deprived within 30days under the stress of 5.0mgL(-1) CuNPs and the relative abundance of anammox bacteria (Ca. Kuenenia) was decreased from 29.59% to 17.53%. Meanwhile, copper resistance genes associated with the Cus, Cop and Pco systems were enriched to eliminate excess intracellular copper. After the withdrawal of CuNPs from the influent, the nitrogen removal capacity of anammox biomass recovered completely within 70days. Overall, anammox biomass showed susceptibility, resistance and resilience to the stress of CuNPs. Therefore, the potential impacts of ENPs on anammox-based processes should be of great concern.201728550773
7886160.9760Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance.202032244076
7863170.9760Mechanisms on the removal of gram-negative/positive antibiotic resistant bacteria and inhibition of horizontal gene transfer by ferrate coupled with peroxydisulfate or peroxymonosulfate. The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.202438615644
7864180.9760Simultaneous removal of antibiotics and antibiotic resistant genes using a CeO(2)@CNT electrochemical membrane-NaClO system. The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO(2) modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO(2)@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO(2) to CNT was 5:7 and the current density was 2.0 mA/cm(2), the CeO(2)@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO(2)@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including •OH, •ClO, •O(2)(-) and (1)O(2). Antibiotics can undergo efficient degradation by •OH. However, the reaction between •OH and antibiotics reduces the availability of •OH to permeate into the cells and react with DNA. Nevertheless, the presence of •OH enhancd the effects of •ClO, •O(2)(-), and (1)O on ARG degradation. Through the coupled action of •OH, •ClO, •O(2)(-), and (1)O(2), the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs.202337429382
7750190.9760Efficient removal of enrofloxacin in swine wastewater using eukaryotic-bacterial symbiotic membraneless bioelectrochemical system. A eukaryotic-bacterial symbiotic membraneless bioelectrochemical system (EBES) reactor with eukaryotic-bacteria symbiotic cathode was developed to treat swine wastewater containing enrofloxacin (ENR), which had high performance at ENR tolerance and operational stability. With ENR concentrations shifting from 2 to 50 mg/L, the removal efficiencies of ENR, chemical oxygen demand (COD) and NH(4)(+)-N always were higher than 95 %, and the maximum power output (≥343 mW/m(3)) could be achieved. At 20 mg/L ENR, the removal efficiencies of ENR, COD and NH(4)(+)-N respectively reached to 99.4 ± 0.1 %, 98.5 % ± 0.1 %, and 96.3 % ± 0.5 %, corresponding to the open circuit voltage and maximum power density (P(max)) of EBES were 851 mV and 455 mW/m(3). The community analyses showed that bacteria (Comamonas, Rhodobacter, Rhodococcus, and Vermiphilaceae et al.), algae (Chlorella) and fungi (Rozellomycota, Trebouxiophyceae, Exophiala, and Aspergillus et al.) at genus level were the dominate populations in the EBES, and their abundance increased with ENR concentration, suggesting they played key roles to remove ENR and another nutrient element. The low relative abundances (1.9 ×10(-7) to 1.1 ×10(-5) copies/g) of aac (6')-ib-cr, qnrA, qnrD, qnrS, and gyrA in effluent revealed that the present EBES reactor had superior capabilities in controlling antibiotic-resistance genes and antibiotic-resistant bacteria. Our trial experiments provided a novel way for antibiotic livestock wastewater treatment.202539938376