CONCORDANCE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
140200.9883Detection of β-lactam resistance genes in Gram-negative bacteria from positive blood cultures using a microchip-based molecular assay. BACKGROUND: Accurate detection of β-lactam resistance genes in bloodstream infections is critical for guiding antimicrobial therapy. This study evaluates the Alifax Gram-negative resistance (GNR) microchip assay for detecting β-lactam resistance genes directly from positive blood cultures (PBCs) for Gram-negative (GN) bacteria, including Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. METHODS: Simulated (n=146) and clinical (n=106) GN-PBC samples were tested for bla (KPC), bla (VIM), bla (NDM), bla (IMP), bla (OXA-23)-like, bla (OXA-48)-like, bla (SHV)-ESBL, bla (CTX-M-1/9) group, and bla (CMY-2)-like genes using the GNR microchip assay. Whole-genome sequencing (WGS) served as the reference assay for simulated samples and, selectively, for clinical samples. The bioMérieux BioFire Blood Culture Identification 2 (BCID2) panel assay was used as a comparator for clinical samples. RESULTS: The GNR microchip assay correctly identified 203 (99.5%) of 204 β-lactam resistance genes in simulated samples. One sample tested false negative for a bla (SHV)-ESBL gene but true positive for a bla (KPC) gene. In clinical samples, GNR results were concordant with BCID2 for 113 (100%) of 113 genes included in both assays. Additionally, the GNR assay detected bla (CMY-2) -like (n=6), bla (OXA-23)-like (n=5), and bla (SHV)-ESBL (n=2), which are not targeted by BCID2, all confirmed by WGS. In two β-lactam-resistant P. aeruginosa samples but negative by the GNR assay, WGS confirmed the absence of acquired β-lactam resistance genes, suggesting alternative resistance mechanisms. CONCLUSION: The GNR microchip assay demonstrated high concordance and broader β-lactam resistance gene coverage compared to BCID2, supporting its potential role in routine diagnostics. Further validation in larger, prospective studies is warranted.202540529307
147510.9882Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions.202032983057
148520.9880Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures. The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.201626904669
147930.9880BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Central line-associated bloodstream infection (CLABSI) is among the most serious hospital acquired infections. Therefore, the rapid detection of the causative microorganism is of crucial importance to allow for the appropriate antimicrobial therapy. In the present study, we analyzed the clinical performance of the BioFire FilmArray Blood Culture Identification 2 (BCID2) panel in the identification of 33 microbial species and 10 antibiotic resistance genes in comparison to the VITEK-2 system. A total of 104 blood specimens were included. The FilmArray BCID2 results were concordant with the VITEK-2 system in 69/97 specimens (71.1%). Non-concordance was either due to the detection of more pathogens by the FilmArray BCID2 23/28 (82%) or microbial species were misidentified 5/28 (18%). Hence, in comparison to the VITEK-2 system, the FilmArray BCID2 panel showed an overall sensitivity of 75.8% (95% CI, 66-83%) and an overall specificity of 98% (95% CI, 97-98.8%) in detecting microbial species. For the resistance genes, the FilmArray BCID was able to detect the presence of blaCTX-M gene in 23 Gram-negative isolates, blaNDM and blaOXA-48- like genes in 14 and 13 isolates, respectively. The mecA and mecC genes were found in 23 Staphylococcus species, while mecA, mecC and MREJ genes were found in 4 Staphylococcus aureus isolates. The sensitivity and specificity for detecting resistance genes by the FilmArray BCID2 was 90% (95% CI, 81.4-95%) and 99.6% (95% CI, 99-100%), respectively. As concluded, the present study emphasizes the high sensitivity and specificity of the FilmArray BCID2 in the rapid and reliable detection of different bacteria and fungi from positive blood culture bottles, as well as the accurate detection of various antibiotic resistance markers.202236358274
147840.9879Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the bla(CTX-M) gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals.202336519852
147750.9879Multicenter Evaluation of the BIOFIRE Blood Culture Identification 2 Panel for Detection of Bacteria, Yeasts, and Antimicrobial Resistance Genes in Positive Blood Culture Samples. Diagnostic tools that can rapidly identify and characterize microbes growing in blood cultures are important components of clinical microbiology practice because they help to provide timely information that can be used to optimize patient management. This publication describes the bioMérieux BIOFIRE Blood Culture Identification 2 (BCID2) Panel clinical study that was submitted to the U.S. Food & Drug Administration. Results obtained with the BIOFIRE BCID2 Panel were compared to standard-of-care (SoC) results, sequencing results, PCR results, and reference laboratory antimicrobial susceptibility testing results to evaluate the accuracy of its performance. Results for 1,093 retrospectively and prospectively collected positive blood culture samples were initially enrolled, and 1,074 samples met the study criteria and were included in the final analyses. The BIOFIRE BCID2 Panel demonstrated an overall sensitivity of 98.9% (1,712/1,731) and an overall specificity of 99.6% (33,592/33,711) for Gram-positive bacteria, Gram-negative bacteria and yeast targets which the panel is designed to detect. One hundred eighteen off-panel organisms, which the BIOFIRE BCID2 Panel is not designed to detect, were identified by SoC in 10.6% (114/1,074) of samples. The BIOFIRE BCID2 Panel also demonstrated an overall positive percent agreement (PPA) of 97.9% (325/332) and an overall negative percent agreement (NPA) of 99.9% (2,465/2,767) for antimicrobial resistance determinants which the panel is designed to detect. The presence or absence of resistance markers in Enterobacterales correlated closely with phenotypic susceptibility and resistance. We conclude that the BIOFIRE BCID2 Panel produced accurate results in this clinical trial.202337227281
147460.9873Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. PURPOSE: Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. MATERIALS AND METHODS: The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. RESULTS: A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. CONCLUSION: The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings.201728966495
148870.9871Evaluation of an automated rapid diagnostic assay for detection of Gram-negative bacteria and their drug-resistance genes in positive blood cultures. We evaluated the performance of the Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN; Nanosphere, Northbrook, IL, USA), an automated multiplex assay for rapid identification of positive blood cultures caused by 9 Gram-negative bacteria (GNB) and for detection of 9 genes associated with β-lactam resistance. The BC-GN assay can be performed directly from positive blood cultures with 5 minutes of hands-on and 2 hours of run time per sample. A total of 397 GNB positive blood cultures were analyzed using the BC-GN assay. Of the 397 samples, 295 were simulated samples prepared by inoculating GNB into blood culture bottles, and the remaining were clinical samples from 102 patients with positive blood cultures. Aliquots of the positive blood cultures were tested by the BC-GN assay. The results of bacterial identification between the BC-GN assay and standard laboratory methods were as follows: Acinetobacter spp. (39 isolates for the BC-GN assay/39 for the standard methods), Citrobacter spp. (7/7), Escherichia coli (87/87), Klebsiella oxytoca (13/13), and Proteus spp. (11/11); Enterobacter spp. (29/30); Klebsiella pneumoniae (62/72); Pseudomonas aeruginosa (124/125); and Serratia marcescens (18/21); respectively. From the 102 clinical samples, 104 bacterial species were identified with the BC-GN assay, whereas 110 were identified with the standard methods. The BC-GN assay also detected all β-lactam resistance genes tested (233 genes), including 54 bla(CTX-M), 119 bla(IMP), 8 bla(KPC), 16 bla(NDM), 24 bla(OXA-23), 1 bla(OXA-24/40), 1 bla(OXA-48), 4 bla(OXA-58), and 6 blaVIM. The data shows that the BC-GN assay provides rapid detection of GNB and β-lactam resistance genes in positive blood cultures and has the potential to contributing to optimal patient management by earlier detection of major antimicrobial resistance genes.201424705449
148380.9869Clinical Evaluation of the iCubate iC-GPC Assay for Detection of Gram-Positive Bacteria and Resistance Markers from Positive Blood Cultures. The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections.201829899000
148690.9869Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy.201526361710
1481100.9869Molecular versus conventional assay for diagnosis of hospital-acquired pneumonia in critically ill patients: a single center experience. PURPOSE: Lower respiratory tract infections are reported as one of top five causes of mortality and morbidity in the world. A bacterial etiology is often involved in HAP, most frequently from multidrug resistant gram-negative bacteria, and fast accurate diagnosis of etiologic agent(s) of LRTI is essential for an appropriate management. The aim of this retrospective study was to evaluate the analytical performance of Biofire Filmarray Pneumonia Plus for bacteria detection in bronchoalveolar lavage samples and the concordance of bacterial loads between BFPP and cultural gold standard methods. METHODS: A total of 111 BAL samples were obtained from 111 consecutive patients admitted to Intensive Care Unit of "Renato Dulbecco" Teaching Hospital of Catanzaro, from March 2023 to March 2024. RESULTS: Compared to conventional methods, BFPP showed a sensitivity of 99 % and a specificity of 64 %. The agreement between the two methods was assessed by calculating PPA and NPA, being 89 % and 95 %, respectively. The most common bacterial species identified at BFPP was Klebsiella pneumoniae, followed by Acinetobacter calcaceuticus-baumanii complex, Staphylococcus aureus and Pseudomonas aeruginosa. Bacterial load (CFU/ml) in relation to copy number detected by molecular analysis showed the best performance for value ≥10(6) copie/mL. About molecular mechanisms of resistance in comparison to phenotypic profiles, the highest level of performance was observed for presence of KPC genes, all isolates showing resistance to carbapenems, followed by OXA-48 like and NDM. CONCLUSION: The high concordance reported in this study between the identification of resistance genes and phenotypic indication can lead to an appropriate, fast and tailored antibiotic therapy.202540513663
1405110.9868The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC).202235732546
1487120.9868Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. We evaluated the Verigene Gram-negative blood culture (BC-GN) test, a microarray that detects Gram-negative bacteria and several resistance genes. A total of 102 positive blood cultures were tested, and the BC-GN test correctly identified 97.9% of the isolates within its panel. Resistance genes (CTX-M, KPC, VIM, and OXA genes) were detected in 29.8% of the isolates, with positive predictive values of 95.8% (95% confidence interval [CI], 87.7% to 98.9%) in Enterobacteriaceae and 100% (95% CI, 75.9% to 100%) in Pseudomonas aeruginosa and negative predictive values of 100% (95% CI, 93.9% to 100%) and 78.6% (95% CI, 51.0% to 93.6%), respectively.201424478405
1476130.9867Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy.202032179139
1428140.9866Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI.201829936619
1454150.9866OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II.202337010165
1412160.9865A highly multiplexed melt-curve assay for detecting the most prevalent carbapenemase, ESBL, and AmpC genes. Resistance to third-generation cephalosporins and carbapenems in Gram-negative bacteria is chiefly mediated by beta-lactamases including extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase enzymes. Routine phenotypic detection methods do not provide timely results, and there is a lack of comprehensive molecular panels covering all important markers. An ESBL/carbapenemase high-resolution melt analysis (HRM) assay (SHV, TEM, CTX-M ESBL families, and NDM, IMP, KPC, VIM and OXA-48-like carbapenemases) and an AmpC HRM assay (16S rDNA control, FOX, MOX, ACC, EBC, CIT, and DHA) were designed and evaluated on 111 Gram-negative isolates with mixed resistance patterns. The sensitivity for carbapenemase, ESBL, and AmpC genes was 96.7% (95% confidence interval [CI]: 82.8-99.9%), 93.6% (95% CI: 85.7-97.9%), and 93.8% (95% CI: 82.8-98.7%), respectively, with a specificity of 100% (95% CI: 95.6-100%), 93.9% (95% CI: 79.8-99.3%), and 93.7% (95% CI: 84.5-98.2%). The HRM assays enable the simultaneous detection of the 14 most important ESBL, carbapenemase, and AmpC genes and could be used as a molecular surveillance tool or to hasten detection of antimicrobial resistance for treatment management.202032521424
1426170.9865Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. OBJECTIVES: To identify the carbapenemase producing Gram-negative bacteria (GNB) by phenotypic methods and to confirm the presence of resistant genes using real-time polymerase chain reaction (PCR). METHODS: This was a prospective study carried out at the Department of Microbiology, Sri Venkata Sai Medical College and Hospital, Mahabubnagar, India, from March 2018-2021. All samples were screened for carbapenem resistance by disc diffusion method and the VITEK(®)2 compact system (bioMérieux, France). Detection of carbapenemase was carried out using RAPIDEC(®)CARBA NP test (Biomeriux Private Limited, South Delhi, India), screening for metallo-β-lactamases (MBL) was carried out by double disk synergy test (DDST), and genotypic characterization by real-time PCR. RESULTS: Among the 1093 Gram-negative bacilli identified, 220 (17.0%) were resistant to carbapenems by both tested methods. Carbapenemase detection using the RAPIDEC(®)CARBA NP test indicated that 207 (94.0%) were carbapenemase producers, of which 189 (91.2%) were MBL producers. The most common carbapenemase genes identified were New Delhi metallo-β-lactamase (NDM; 47.3%), followed by the co-existence of genes in combination of NDM, with Verona integron-mediated metallo-β-lactamase (VIM; 39.6%), VIM and oxacillin hydrolyzing enzymes-48 (OXA-48; 4.3%), and OXA-48 (1.4%).No gene of active on imipenem, Klebsiella pneumonia carbapenemase, VIM, or OXA-48 alone was detected. CONCLUSION: This study suggests routine carbapenem resistance testing among multi-drug resistant-GNBs, as most of these infections occur in hospitals. In addition, there is a possibility that these highly antibiotic-resistant genes could spread to other bacteria resulting in further dissemination.202235256490
1480180.9865Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: bla(KPC), bla(CTXM-14/15), bla(NDM)/bla(/IMP)/bla(VIM), bla(AmpC), bla(OXA), vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: bla(KPC) (n = 10), bla(NDM)/bla(/IMP)/bla(VIM) (n = 5), bla(CTXM-14/15) (n = 4), bla(AmpC) (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for bla(CTXM-14/15), bla(NDM)/bla(/)(IMP)/bla(VIM), bla(AmpC), mecA/mecC and 87.5% for bla(KPC). When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for bla(KPC). In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.202438456690
1489190.9865Direct detection of mecA, bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes from positive blood culture bottles by multiplex-touchdown PCR assay. Methicillin-resistant staphylococci (MRS) and ESBL(Extended-Spectrum β-Lactamase)-producing bacteria are the most important resistant pathogens in sepsis. In this study, a new multiplex-touchdown PCR method (MT-PCR) was developed to detect rapidly and simultaneously the presence of mecA, bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes from positive blood culture bottles. The technique showed a sensitivity of 10(3 ) CFU ml(-1) for mecA detection and of 10(2)  CFU ml(-1) for other genes, and 100% specificity in the detection of all genes. All genes were detected in the spiked blood culture bottles artificially contaminated with reference strains. Three methicillin-resistant S. aureus (MRSA), two methicillin-resistant S. epidermidis (MRSE) and 32 ESBL-producing bacteria, were isolated from the clinical blood culture specimens in 48 h by standard microbiological procedures. The corresponding genes were detected directly in the three MRSA, two MRSE and 29 ESBL-producing bacteria from the clinical blood culture specimens in 4 h by MT-PCR assay. None of the bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes were detected in three other bottles with ESBL-producing bacteria because of other ESBL genotypes in the pathogens. Likewise, all bottles proven negative by culture remained negative by PCR. The proposed method was rapid, sensitive and specific, and was able to directly detect the genes of MRS and ESBL-producing bacteria from the blood culture bottles. SIGNIFICANCE AND IMPACT OF THE STUDY: Many studies on the development of PCR for the detection of resistance genes have already been published, including multiplex PCR methods. However, cross-amplification reactions can be a major concern in multiplex PCR methods. In this study, we developed a highly sensitive and specific multiplex-touchdown PCR assay for simultaneous detection of mecA, bla(SHV) , bla(CTX)(-M) , bla(TEM) and bla(OXA) genes from positive blood culture bottles, cross-amplification was absent and false-positive results were not obtained.201727699804