CONCENTRATIONS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
787200.9974Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. Surfactants could influence sludge morphology and disinfectants were linked to antibiotic resistance genes (ARGs). Thus, the response of activated sludge and ARGs to long-term quaternary ammonium compounds (QACs) exposure required further investigation, which is a popular surfactant and disinfectant. Here, three sequencing batch reactors were fed with 5 mg/L most frequently detected QACs (dodecyl trimethyl ammonium chloride (ATMAC C12), dodecyl benzyl dimethyl ammonium chloride (BAC C12) and didodecyl dimethyl ammonium chloride (DADMAC C12)) for 180 d. The long-term inhibitory effect on denitrification ranked: DADMAC C12 > BAC C12 > ATMAC C12. Besides, obvious granular sludge promoted by the increase of α-Helix/(β-Sheet + Random coil) appeared in DADMAC C12 system. Moreover, intracellular ARGs increased when denitrification systems encountered QACs acutely but decreased in systems chronically exposed to QACs. Although replication and repair metabolism in ATMAC C12 system was higher, ATMAC C12 significantly promoted proliferation of extracellular ARGs. It was noteworthy that the propagation risk of extracellular ARGs in sludge increased significantly during sludge granulation process, and intracellular sul2 genes in sludge and water both increased with the granular diameter in DADMAC C12 system. The universal utilization of QACs may enhance antibiotic resistance of bacteria in wastewater treatment plants, deserving more attention.202336444811
674110.9973Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake. Benzylalkyldimethylethyl ammonium compounds are pervasive in natural environments and toxic at high concentrations. The changes in functional genes and microbial diversity in eutrophic lake samples exposed to benzyldimethyldodecyl ammonium chloride (BAC) were assessed. BAC exerted negative effects on bacteria abundance, particularly at concentrations of 100 μg L(-1) and higher. A significant increase in the number of the quaternary ammonium compound-resistant gene qacA/B was recorded within the 10 μg L(-1) treatment after the first day of exposure. Not all antibiotic resistance genes increased in abundance as the concentrations of BAC increased; rather, gene abundances were dependent on the gene type, concentrations of BAC, and contact time. The nitrogen fixation-related gene nifH and ammonia monooxygenase gene amoA were inhibited by high concentrations of BAC after the first day, whereas an increase of the nitrite reductase gene nirK was stimulated by exposure. Microbial communities within higher treatment levels (1000 and 10 000 μg L(-1)) exhibited significantly different community composition compared to other treatment levels and the control. Selective enrichment of Rheinheimera, Pseudomonas, and Vogesella were found in the higher treatment levels, suggesting that these bacteria have some resistance or degradation capacity to BAC. Genes related with RNA processing and modification, transcription, lipid transport and metabolism, amino acid transport and metabolism, and cell motility of microbial community function were involved in the process exposed to the BAC stress.201829414358
793620.9972Impact of uranium on antibiotic resistance in activated sludge. The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.202438278272
804530.9972Correlation among extracellular polymeric substances, tetracycline resistant bacteria and tetracycline resistance genes under trace tetracycline. Antibiotic resistance occurrences and proliferation in activated sludge have attracted more and more attention nowadays. However, the role which extracellular polymeric substance (EPS) plays on the antibiotic resistance is not clear. The changes and correlation among EPS, tetracycline (TC) resistant bacteria (TRB) and TC resistance genes (TRGs) of sequencing batch reactors (SBRs) were investigated. Performance of SBR without TC was compared with two other SBRs to which different amounts of TC were added. Total average EPS contents were found to increase significantly from 66 mg g−1 VSS to 181 mg g−1 VSS as the TC concentrations increased from 0 to 100 μg L−1. As the EPS content increased, TRB in sludge of the three SBRs increased significantly from 105 to 106 colony forming unit mL−1 after being exposed to TC. In addition, the concentrations of three groups of TRGs (copies mL−1) were determined by real-time fluorescence quantitative polymerase chain reaction and followed the order: efflux pump genes > ribosome protected genes > degradation enzyme genes. The numbers of TRGs in the idle stage were larger than those in the aeration sludge. Correlation coefficients (R2) between EPS and TRB in sludge were 0.823 (p < 0.01) while the correlation between EPS and total TRGs was poor (R2 = 0.463, p > 0.05). But it showed the same tendency that EPS and TRGs in sludge increased with the increasing of TC.201425461932
790540.9972Long-term responses of antibiotic resistance genes under high concentration of enrofloxacin, sulfadiazine and triclosan in aerobic granular sludge system. It is worth to reveal the long-term responses of antibiotic resistance genes (ARGs) in aerobic granular sludge (AGS) system exposed to high level enrofloxacin (ENR), sulfadiazine (SDZ) and triclosan (TCS). In present study, ppm level ENR, SDZ and TCS were added into three AGS reactors, respectively. ARGs in ENR and SDZ systems showed trends of increasing first and then decreasing, which were contrary to that in TCS system. 80%, 56% and 40% ARGs in ENR, SDZ and TCS systems, respectively, were enriched after loading, but several ARGs still kept high enrichment values after the withdrawn of loadings. The dominant bacteria in ENR (Flavobacterium), SDZ (Candidatus_Competibacter and Defluviicoccus) and TCS (Defluviicoccus) systems might contribute to the reductions of ARGs. IntI1 altered the overall ARGs profiles through horizontal gene transfer. The interactions of bacterial communities and environmental factors might be responsible for the different ARGs patterns in ENR, SDZ and TCS systems.202032470826
788650.9971Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance.202032244076
796760.9971Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Ciprofloxacin (CIP), a fluoroquinolone antibiotic, removal was examined for the first time, in an anaerobic sulfate-reducing bacteria (SRB) sludge system. About 28.0% of CIP was biodegraded by SRB sludge when the influent CIP concentration was 5000 μg/L. Some SRB genera with high tolerance to CIP (i.e. Desulfobacter), were enriched at CIP concentration of 5000 μg/L. The changes in antibiotic resistance genes (ARGs) of SRB sludge coupled with CIP biodegradation intermediates were used to understand the mechanism of CIP biodegradation for the first time. The percentage of efflux pump genes associated with ARGs increased, while the percentage of fluoroquinolone resistance genes that inhibit the DNA copy of bacteria decreased during prolonged exposure to CIP. It implies that some intracellular CIP was extruded into extracellular environment of microbial cells via efflux pump genes to reduce fluoroquinolone resistance genes accumulation caused by exposure to CIP. Additionally, the degradation products and the possible pathways of CIP biodegradation were also examined using the new method developed in this study. The results suggest that CIP was biodegraded intracellularly via desethylation reaction in piperazinyl ring and hydroxylation reaction catalyzed by cytochrome P450 enzymes. This study provides an insight into the mechanism and pathways of CIP biodegradation by SRB sludge, and opens-up a new opportunity for the treatment of CIP-containing wastewater using sulfur-mediated biological process.201829494897
793770.9971Effects of oxytetracycline on variation in intracellular and extracellular antibiotic resistance genes during swine manure composting. This research aimed to investigate the alterations in extracellular (eARGs) and intracellular (iARGs) antibiotic resistance genes in response to oxytetracycline (OTC), and unravel the dissemination mechanism of ARGs during composting. The findings revealed both low (L-OTC) and high contents (H-OTC) of OTC significantly enhanced absolute abundance (AA) of iARGs (p < 0.05), compared to CK (no OTC). Composting proved to be a proficient strategy for removing eARGs, while AA of eARGs was significantly enhanced in H-OTC (p < 0.05). OTC resulted in an increase in AA of mobile genetic elements (MGEs), ATP levels, antioxidant and DNA repair enzymes in bacteria in compost product. Structural equation model further demonstrated that OTC promoted bacterial DNA repair and antioxidant enzyme activities, altered bacterial community and enhanced MGEs abundance, thereby facilitating iARGs dissemination. This study highlights OTC can increase eARGs and iARGs abundance, underscoring the need for appropriate countermeasures to mitigate potential hazards.202438036151
759680.9971The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Clarithromycin retained in waste activated sludge (WAS) inevitably enters the anaerobic digestion system. So far, the complex impacts and fate of clarithromycin in continuous operated WAS anaerobic digestion system are still unclear. In this study, two semi-continuous long-term reactors were set up to investigate the effect of clarithromycin on biogas production and antibiotic resistance genes (ARGs) during WAS anaerobic digestion, and a batch test was carried out to explore the potential metabolic mechanism. Experimental results showed that clarithromycin at lower concentrations (i.e., 0.1 and 1.0 mg/L) did not affect biogas production, whereas the decrease in biogas production was observed when the concentration of clarithromycin was further increased to 10 mg/L. Correspondingly, the relative abundance of functional bacteria in WAS anaerobic digestion (i.e., Anaerolineaceae and Microtrichales) was reduced with long-term clarithromycin exposure. The investigation of ARGs suggested that the effect of methylation belonging to the target site modification played a critical role for the anaerobic microorganisms in the expression of antibiotic resistance, and ermF, played dominated ARGs, presented the most remarkable proliferation. In comparison, the role of efflux pump was weakened with a significant decrease of two detected efflux genes. During WAS anaerobic digestion, clarithromycin could be partially degraded into metabolites with lower antimicrobial activity including oleandomycin and 5-O-desosaminyl-6-O-methylerythronolide and other metabolites without antimicrobial activity.202133545126
791490.9971Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA.202032050397
7956100.9971Silver nanoparticles regulate antibiotic resistance genes by shifting bacterial community and generating anti-silver genes in estuarine biofilms. Biofilms are thought to be sinks for antibiotic resistance genes (ARGs) and nanoparticles (NPs), however, studies on the interactions between NPs and ARGs in biofilms are limited. This study focused on the occurrence and regulatory mechanisms of ARGs during the formation of biofilms with continuous treatment of zero-valent silver nanoparticles (Ag(0)-NPs) and Ag ions at an environmental concentration of 10 µg/L in the Yangtze Estuary. The biofilms could enrich large amounts of Ag, with the highest concentration of 97.60 mg/kg and 111.08 mg/kg in the Ag(0)-NPs and Ag ions group at 28 days. Compared to the blank at 28 days, the abundance of ARGs was reduced 2.2 times in the Ag(0)-NPs group, whereas it increased 1.3 times in the Ag ion group. Ag(0)-NPs and Ag ions induced the production of silver resistance genes (SRGs) or selected bacteria with SRGs in biofilms. Based on machine learning, the bacterial community, SRGs, and Ag concentration were the top three dominant regulators of ARGs, with 27.74 %, 25.57 %, and 17.93 % contributions, respectively. Structural equation modeling revealed that Ag could indirectly regulate ARGs by regulating the bacterial community in the Ag(0)-NPs group. Metagenomic sequencing further showed that most of the decreased ARGs were hosted by Betaproteobacteria in the Ag(0)-NPs groups. According to the KEGG pathway database, the possible molecular mechanism of Ag(0)-NPs/Ag ions regulating ARGs may be through the two-component system (arlS/silS-arlR) and beta-lactam resistance system (mexI-mexV-oprM/oprZ/smeF). Overall, this study provides new insights into the effects of Ag(0)-NPs at environmental concentrations on the ecological environment, especially regarding the mechanism of regulating ARGs in estuarine biofilms.202439489934
8515110.9971In vitro assessment of the bacterial stress response and resistance evolution during multidrug-resistant bacterial invasion of the Xenopus tropicalis intestinal tract under typical stresses. The intestinal microbiome might be both a sink and source of resistance genes (RGs). To investigate the impact of environmental stress on the disturbance of exogenous multidrug-resistant bacteria (mARB) within the indigenous microbiome and proliferation of RGs, an intestinal conjugative system was established to simulate the invasion of mARB into the intestinal microbiota in vitro. Oxytetracycline (OTC) and heavy metals (Zn, Cu, Pb), commonly encountered in aquaculture, were selected as typical stresses for investigation. Adenosine 5'-triphosphate (ATP), hydroxyl radical (OH·(-)) and extracellular polymeric substance (EPS) were measured to investigate their influence on the acceptance of RGs by intestinal bacteria. The results showed that the transfer and diffusion of RGs under typical combined stressors were greater than those under a single stressor. Combined effect of OTC and heavy metals (Zn, Cu) significantly increased the activity and extracellular EPS content of bacteria in the intestinal conjugative system, increasing intI3 and RG abundance. OTC induced a notable inhibitory response in Citrobacter and exerted the proportion of Citrobacter and Carnobacterium in microbiota. The introduction of stressors stimulates the proliferation and dissemination of RGs within the intestinal environment. These results enhance our comprehension of the typical stresses effect on the RGs dispersal in the intestine.202438280323
7502120.9970Differential dose-response patterns of intracellular and extracellular antibiotic resistance genes under sub-lethal antibiotic exposure. Although antibiotics are one of the most significant factors contributing to the propagation of antibiotic resistance genes (ARGs), studies on the dose-response relationship at sub-lethal concentrations of antibiotics remain scarce, despite their importance for assessing the risks of antibiotics in the environment. In this study, we constructed a series of microcosms to investigate the propagation of intracellular (iARGs) and extracellular (eARGs) ARGs in both water and biofilms when exposed to antibiotics at various concentrations (1-100 μg/L) and frequencies. Results showed that eARGs were more abundant than iARGs in water, while iARGs were the dominant ARGs form in biofilms. eARGs showed differentiated dose-response relationships from iARGs. The abundance of iARGs increased with the concentration of antibiotics as enhanced selective pressure overcame the metabolic burden of antibiotic-resistant bacteria carrying ARGs. However, the abundance of eARGs decreased with increasing antibiotic concentrations because less ARGs were secreted from bacterial hosts at higher concentrations (100 μg/L). Furthermore, combined exposure to two antibiotics (tetracycline & imipenem) showed a synergistic effect on the propagation of iARGs, but an antagonistic effect on the propagation of eARGs compared to exposure to a single antibiotic. When exposed to antibiotic at a fixed total dose, one-time dosing (1 time/10 d) favored the propagation of iARGs, while fractional dosing (5 times /10 d) favored the propagation of eARGs. This study sheds light on the propagation of antibiotic resistance in the environment and can help in assessing the risks associated with the use of antibiotics.202337257347
7971130.9970Abiotic mechanism changing tetracycline resistance in root mucus layer of floating plant: The role of antibiotic-exudate complexation. Antibiotic contamination and antibiotic resistance have caused growing concerns in different aquatic environments. This work investigated the complexation between tetracycline chloride (TCH) and the molecular weight (MW)-fractionated root exudates - the key abiotic mechanism impacting antibiotic fate and antibiotic resistance in rhizosphere. Results show that the affinity of TCH to the high MW exudates (≥10 kDa) facilitated the TCH deposition on roots and meanwhile reinforced the expression of certain tetracycline resistance genes (i.e. tetA) and the growth of tetracycline resistant bacteria. The interaction between TCH and the lower MW exudates (<10 kDa) completely inhibited the bacteria growth even below the minimum inhibitory concentration of TCH. In microcosms, the abiotic interaction between TCH and root exudates made effects along with biotic processes. Persistent TCH stimulation (≥50 µg/L, 7 d) induced the change of tet gene abundance and bacteria phyla composition though the mediation of root exudates made the rhizosphere less sensitive to the TCH stress. Summarily, the affinity of antibiotics to root exudates varied with MWs, which was closely related to (i) the antibiotic fate in the root mucus layer, (ii) the bacteria inhibition capacity of antibiotics, and (iii) the antibiotic resistance and bacterial community.202133813291
8044140.9970Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75-77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.202235007308
8541150.9970Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress.202337586490
8518160.9970Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium. Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance.201526370618
8029170.9970Migration of antibiotic resistance genes and evolution of flora structure in the Xenopus tropicalis intestinal tract with combined exposure to roxithromycin and oxytetracycline. The intestinal flora is one of the most important environments for antibiotic resistance development, owing to its diverse mix of bacteria. An excellent medicine model organism, Xenopus tropicalis, was selected to investigate the spread of antibiotic resistance genes (ARGs) in the intestinal bacterial community with single or combined exposure to roxithromycin (ROX) and oxytetracycline (OTC). Seventeen resistance genes (tetA, tetB, tetE, tetM, tetO, tetS, tetX, ermF, msrA, mefA, ereA, ereB, mphA, mphB, intI1, intI2, intI3) were detected in the intestines of Xenopus tropicalis living in three testing tanks (ROX tanks, OTC tanks, ROX + OTC tanks) and a blank tank for 20 days. The results showed that the relative abundance of total ARGs increased obviously in the tank with single stress but decreased in the tank with combined stress, and the genes encoding the macrolide antibiotic efflux pump (msrA), phosphatase (mphB) and integron (intI2, intI3) were the most sensitive. With the aid of AFM scanning, DNA was found to be scattered short chain in the blank, became extended or curled and then compacted with the stress from a single antibiotic, and was compacted and then fragmented with combined stress, which might be the reason for the variation of the abundance of ARGs with stress. The ratio of Firmicutes/Bacteroides related to diseases was increased by ROX and OTC. The very significant correlation between intI2 and intI3 with tetS (p ≤ 0.001) hinted at a high risk of ARG transmission in the intestines. Collectively, our results suggested that the relative abundance of intestinal ARGs could be changed depending on the intestinal microbiome and DNA structures upon exposure to antibiotics at environmental concentrations.202235063519
7612180.9970Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs.201829161575
8093190.9969Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.202032302890