COMPLICATIONS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
140700.9917World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800
82810.9914Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns.202337623959
226920.9913Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania.202539833938
210530.9911Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. BACKGROUND: Drug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB) from environmental sources. The clinical implication of such environmental GNBs is unknown. OBJECTIVES: We conducted a systematic review to determine how often such saprophytic GNBs cause human infections. METHODS: We queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms "infections," "human infections," "hospital infection." We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI), urinary tract infection (UTI), skin and soft tissue infection (SSTI), post-surgical infection (PSI), osteomyelitis (Osteo), and pneumonia (PNA) were quantitatively assessed. RESULTS: Thirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans, and Pseudomonas putida. Of these infections, 443 (66%) had BSI, 48 (7%) had SSTI, 36 (5%) had UTI, 28 (4%) had PSI, 21 (3%) had PNA, 16 (3%) had Osteo, and 82 (12%) had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL), carbapenemase, and metallo-β-lactamase genes recognized in human pathogens. CONCLUSION: These observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa.201729164118
226740.9911MOLECULAR CHARACTERIZATION AND DETECTION OF MULTIDRUGRESISTANT GENE IN BACTERIAL ISOLATES CAUSING LOWER RESPIRATORY TRACT INFECTIONS (LRTI) AMONG HIV/AIDS PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) IN UYO, SOUTH-SOUTH NIGERIA. BACKGROUND: Antibiotic-resistant genes (ARGs) pose a significant challenge in modern medicine, rendering infections increasingly difficult to treat as bacteria acquire mechanisms to resist antibiotics. Addressing ARGs necessitates a multifaceted approach, encompassing surveillance efforts to monitor their presence and the development of strategies aimed at managing and curbing the spread of antibiotic resistance. Hence, this study characterized the genetic determinants of antibiotic resistance among isolates responsible for Lower Respiratory Tract Infections (LRTIs) in People Living with HIV/AIDS (PLWHA) in Uyo. METHODS: Sputum samples were collected from 61 LRTI suspects, with bacterial isolates identified using VITEK-2 technology. Polymerase chain reaction assays were employed to detect resistance genes within the isolates. RESULTS: Results revealed a bacterial etiology in 39.3% of the samples, with a majority (79.2%) originating from St. Luke Hospital, Anua (SLHA), and the remainder (20.8%) from the University of Uyo Teaching Hospital (UUTH). Staphylococcus aureus emerged as the predominant isolate (46.6%), while resistance was notably high against Gentamicin and Sulphamethazole/Trimethoprim. Conversely, Azithromycin, imipenem, clindamycin, erythromycin, and ceftriaxone displayed relatively lower resistance levels across all isolates. Notably, four resistance genes CTX-M, Aac, KPC, and MecA were identified, with CTX-M detected in all multidrug-resistant isolates. This underscores the predominantly community-acquired nature of resistance as conferred by CTX-M. CONCLUSION: In conclusion, this study underscores the critical importance of continued vigilance and proactive measures in combating antibiotic resistance, particularly within vulnerable populations such as PLWHA. By elucidating the genetic mechanisms underlying antibiotic resistance, informed targeted interventions can be mitigated to curb threats posed by multidrug-resistant bacteria in clinical settings.202440385712
148150.9910Molecular versus conventional assay for diagnosis of hospital-acquired pneumonia in critically ill patients: a single center experience. PURPOSE: Lower respiratory tract infections are reported as one of top five causes of mortality and morbidity in the world. A bacterial etiology is often involved in HAP, most frequently from multidrug resistant gram-negative bacteria, and fast accurate diagnosis of etiologic agent(s) of LRTI is essential for an appropriate management. The aim of this retrospective study was to evaluate the analytical performance of Biofire Filmarray Pneumonia Plus for bacteria detection in bronchoalveolar lavage samples and the concordance of bacterial loads between BFPP and cultural gold standard methods. METHODS: A total of 111 BAL samples were obtained from 111 consecutive patients admitted to Intensive Care Unit of "Renato Dulbecco" Teaching Hospital of Catanzaro, from March 2023 to March 2024. RESULTS: Compared to conventional methods, BFPP showed a sensitivity of 99 % and a specificity of 64 %. The agreement between the two methods was assessed by calculating PPA and NPA, being 89 % and 95 %, respectively. The most common bacterial species identified at BFPP was Klebsiella pneumoniae, followed by Acinetobacter calcaceuticus-baumanii complex, Staphylococcus aureus and Pseudomonas aeruginosa. Bacterial load (CFU/ml) in relation to copy number detected by molecular analysis showed the best performance for value ≥10(6) copie/mL. About molecular mechanisms of resistance in comparison to phenotypic profiles, the highest level of performance was observed for presence of KPC genes, all isolates showing resistance to carbapenems, followed by OXA-48 like and NDM. CONCLUSION: The high concordance reported in this study between the identification of resistance genes and phenotypic indication can lead to an appropriate, fast and tailored antibiotic therapy.202540513663
125860.9909Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures.202236590129
219670.9909Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens.202540585877
210880.9909Prevalence and Molecular Characterization of Carbapenemase-Producing Multidrug-Resistant Bacteria in Diabetic Foot Ulcer Infections. Background: Diabetic foot ulcers (DFUs) represent severe complications in diabetic patients, often leading to chronic infections and potentially resulting in nontraumatic lower-limb amputations. The increasing incidence of multidrug-resistant (MDR) bacteria in DFUs complicates treatment strategies and worsens patient prognosis. Among these pathogens, carbapenemase-producing pathogens have emerged as particularly concerning owing to their resistance to β-lactam antibiotics, including carbapenems. Methods: This study evaluated the prevalence of MDR bacteria, specifically carbapenemase-producing pathogens, in DFU infections. A total of 200 clinical isolates from DFU patients were analyzed via phenotypic assays, including the modified Hodge test (MHT) and the Carba NP test, alongside molecular techniques to detect carbapenemase-encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48). Results: Among the isolates, 51.7% were confirmed to be carbapenemase producers. The key identified pathogens included Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The most commonly detected carbapenemase genes were blaKPC (27.6%) and blaNDM (24.1%). Carbapenemase-producing isolates presented high resistance to β-lactam antibiotics, whereas non-carbapenemase-producing isolates presented resistance through mechanisms such as porin loss and efflux pumps. Conclusions: The findings of this study highlight the significant burden of MDR infections, particularly carbapenemase-producing organisms, in DFUs. MDR infections were strongly associated with critical clinical parameters, including pyrexia (p = 0.017), recent antibiotic use (p = 0.003), and the severity of infections. Notably, the need for minor amputations was much higher in MDR cases (p < 0.001), as was the need for major amputations (p < 0.001). MDR infections were also strongly associated with polymicrobial infections (p < 0.001). Furthermore, Wagner ulcer grade ≥II was more common in MDR cases (p = 0.002). These results emphasize the urgent need for enhanced microbiological surveillance and the development of tailored antimicrobial strategies to combat MDR pathogens effectively. Given the high prevalence of carbapenem resistance, there is an immediate need to explore novel therapeutic options to improve clinical outcomes for diabetic patients with DFUs.202539857026
148090.9908Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: bla(KPC), bla(CTXM-14/15), bla(NDM)/bla(/IMP)/bla(VIM), bla(AmpC), bla(OXA), vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: bla(KPC) (n = 10), bla(NDM)/bla(/IMP)/bla(VIM) (n = 5), bla(CTXM-14/15) (n = 4), bla(AmpC) (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for bla(CTXM-14/15), bla(NDM)/bla(/)(IMP)/bla(VIM), bla(AmpC), mecA/mecC and 87.5% for bla(KPC). When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for bla(KPC). In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.202438456690
1475100.9907Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions.202032983057
1424110.9907Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.202337289837
2207120.9907Precision medicine in practice: unravelling the prevalence and antibiograms of urine cultures for informed decision making in federal tertiary care- a guide to empirical antibiotics therapy. BACKGROUND AND OBJECTIVES: Urinary tract infections (UTIs), one of the most prevalent bacterial infections, are facing limited treatment options due to escalating concern of antibiotic resistance. Urine cultures significantly help in identification of etiological agents responsible for these infections. Assessment of antibiotic susceptibility patterns of these bacteria aids in tackling the emerging concern of antibiotic resistance and establishment of empirical therapy guidelines. Our aim was to determine various agents responsible for urinary tract infections and to assess their antibiotic susceptibility patterns. MATERIALS AND METHODS: This cross-sectional study was performed over a period of six months from January 2023 to July 2023 in Department of Microbiology of Pakistan Institute of Medical Sciences (PIMS). RESULTS: Out of 2957 positive samples, Gram negative bacteria were the most prevalent in 1939 (65.6%) samples followed by Gram positive bacteria in 418 (14.1%) and Candida spp. in 269 (9.1%) samples. In gram negative bacteria, Escherichia coli (E. coli) was the most prevalent bacteria isolated from 1070 samples (55.2%) followed by Klebsiella pneumoniae in 397 samples (20.5%). In Gram positive bacteria, Enterococcus spp. was the most common bacteria in 213 samples (51%) followed by Staphylococcus aureus in 120 samples (28.7%). Amikacin was the most sensitive drug (91%) for Gram negative bacteria. Gram positive bacteria were most susceptible to linezolid (97%-100%). CONCLUSION: The generation of a hospital tailored antibiogram is essential for the effective management of infections and countering antibiotic resistance. By adopting antimicrobial stewardship strategies by deeper understanding of sensitivity patterns, we can effectively combat antibiotic resistance.202439267930
1406130.9907Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. BACKGROUND: Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. OBJECTIVE: The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. METHODS: Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. RESULTS: There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla (VIM). Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). CONCLUSION: Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria.202133824857
2189140.9906High prevalence of Panton-Valentine Leucocidin (PVL) toxin carrying MRSA and multidrug resistant gram negative bacteria in late onset neonatal sepsis indicate nosocomial spread in a Pakistani tertiary care hospital. BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups.202336621204
2210150.9905Beyond Culture: Real-Time PCR Performance in Detecting Causative Pathogens and Key Antibiotic Resistance Genes in Hospital-Acquired Pneumonia. Introduction: The rise in hospital-acquired pneumonia (HAP) due to antibiotic-resistant bacteria is increasing morbidity, mortality, and inappropriate empirical antibiotic use. This prospective research aimed to evaluate the performance of a real-time polymerase chain reaction (PCR) assay for detecting causative microorganisms and antibiotic-resistance genes from respiratory specimens compared to traditional methods. Additionally, we aimed to determine the molecular epidemiology of antibiotic resistance genes among HAP patients at The University of Jordan hospital. Methods: Lower respiratory tract samples were collected from HAP patients, including those with ventilator-associated pneumonia (VAP), between May 2024 and October 2024. Clinical data from the medical files were used to collect and analyze demographic and clinical information, including clinical outcomes. Real-time PCR was run to detect causative microbes and antibiotic resistance genes. Results: Among 83 HAP patients (median age 63, 61.45% male), 48.15% died. Culture identified Klebsiella (25.53%), Acinetobacter (22.34%), and Candida (24.47%) as the most common pathogens, while qPCR showed higher detection rates, including for A. baumannii (62.20%, p = 0.02) and K. pneumoniae (45.12%, p < 0.001). Carbapenem resistance was high; A. baumannii showed 100% resistance to most antibiotics except colistin (92.31%). The resistance genes ndm (60%) and oxa-48 (58.46%) were frequently detected and significantly associated with phenotypic resistance (p < 0.001). The qPCR identified resistance genes in all carbapenem-resistant cases. No gene significantly predicted mortality. Conclusions: Real-time PCR diagnostic technique combined with epidemiology of antibiotic resistance genes data may be a rapid and effective tool to improve HAP management. Large, multicenter studies are needed in the future to validate the performance of real-time PCR in HAP diagnosis, and appropriate management is also required.202541009915
2132160.9905Prevailing Antibiotic Resistance Patterns in Hospitalized Patients with Urinary Tract Infections in a Vietnamese Teaching Hospital (2014 - 2021). PURPOSE: In a Vietnamese teaching hospital, this study examined the prevalence and patterns of antimicrobial resistance (AMR) of common bacteria isolated from hospitalized patients with urinary tract infections (UTIs) between 2014 and 2021. METHODS: From 4060 urine samples collected, common pathogens were isolated using quantitative culture on brilliance UTI Clarity agar and blood agar. Bacterial identification, antimicrobial susceptibility testing, and multidrug resistance (MDR) classification followed standardized techniques. Bacteria with a frequency of less than 2% were excluded. Statistical analysis was performed using R software, with the chi-square test applied and significance set at p < 0.05. RESULTS: Of 4060 urine samples collected, 892 (22.0%) had positive results for common infections. Gram-negative bacteria predominated (591/892; 66.3%), with Escherichia coli being the most prevalent (336/892; 37.7%). Enterococcus spp. (152/892; 17.0%) was the leading Gram-positive pathogen. Some antibiotics had significant resistance rates, especially in Gram-negative bacteria, with ampicillin having the greatest resistance rate (92.8%). Carbapenems and nitrofurantoin remained generally effective. Among Gram-positive bacteria, high resistance was seen for macrolides ranging from 85.5% (azithromycin) to 89.8% (erythromycin), and for tetracyclines, ranging from 0% (teicoplanin) to 85.2% (tetracycline). There was no resistance to tigecycline and teicoplanin, indicating their potential efficacy against multidrug resistance (MDR) bacteria causing UTIs. MDR rates were higher in Gram-negative bacteria (64.8% versus 43.5%), with Klebsiella pneumoniae having the highest rate (78.7%). CONCLUSION: This study underscores the urgent need for ongoing surveillance of AMR patterns in Vietnam and emphasizes the significance of efficient infection prevention methods, prudent use of antibiotics, and targeted interventions to combat antimicrobial resistance.202539911566
2170170.9905Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011-2013. BACKGROUND: Emerging antibiotic resistance amongst clinically significant bacteria is a public health issue of increasing significance worldwide, but it is relatively uncharacterized in Cambodia. In this study we performed standard bacterial cultures on samples from wounds at a Non-Governmental-Organization (NGO) Hospital in Phnom Penh, Cambodia. Testing was performed to elucidate pathogenic bacteria causing wound infections and the antibiotic resistance profiles of bacterial isolates. All testing was performed at the Naval Medical Research Unit, No.2 (NAMRU-2) main laboratory in Phnom Penh, Cambodia. METHODS: Between 2011-2013, a total of 251 specimens were collected from patients at the NGO hospital and analyzed for bacterial infection by standard bacterial cultures techniques. Specimens were all from wounds and anonymous. No specific clinical information accompanied the submitted specimens. Antibiotic susceptibility testing, and phenotypic testing for extended-spectrum beta-lactamase (ESBL) were performed and reported based on CLSI guidelines. Further genetic testing for CTX-M, TEM and SHV ESBLs was accomplished using PCR. RESULTS: One-hundred and seventy-six specimens were positive following bacterial culture (70 %). Staphlycoccus aureus was the most frequently isolated bacteria. Antibiotic drug resistance testing revealed that 52.5 % of Staphlycoccus aureus isolates were oxacillin resistant. For Escherichia coli isolates, 63.9 % were ciprofloxacin and levofloxacin resistant and 96 % were ESBL producers. Resistance to meropenem and imipenem was observed in one of three Acinetobacter spp isolates. CONCLUSIONS: This study is the first of its kind detailing the antibiotic resistance profiles of pathogenic bacteria causing wound infections at a single surgical hospital in Cambodia. The reported findings of this study demonstrate significant antibiotic resistance in bacteria from injured patients and should serve to guide treatment modalities in Cambodia.201528883936
2523180.9905Antibiotic resistance and virulence of bacteria in spices: a systematic review. BACKGROUND: Spices, widely valued for their flavor, color, and antioxidant properties, are increasingly used in culinary and food industries. Despite their benefits, spices may act as carriers for antibiotic-resistant and potentially pathogenic bacteria, posing a threat to food safety and public health. METHODS: This systematic review followed the PRISMA 2020 guidelines. A comprehensive search of six databases (Web of Science, PubMed, Scopus, Cochrane Library, Google Scholar, and Embase) was conducted for English-language articles from inception to 2023, focusing on bacterial contamination, antibiotic resistance, and virulence in spices. Inclusion was limited to peer-reviewed articles, and methodological quality was assessed using the JBI checklist. RESULTS: Of the 3,458 initially identified articles, 16 met the inclusion criteria. Most studies originated from Asia (n = 5) and the Americas (n = 4). Bacteria commonly isolated from spices included Bacillus cereus, Escherichia coli, Salmonella spp., and Staphylococcus aureus. High resistance levels were observed against ampicillin (83.3%) and penicillin (82.1%), while most isolates were susceptible to polymyxin B and cephalothin. Resistance genes such as bla, tetK, and ermB were frequently detected, along with virulence genes like nheA, hblC, cytK, and tpeL. CONCLUSION: Spices may serve as reservoirs for multidrug-resistant and virulent bacteria. Improved handling, processing, and decontamination practices are essential to mitigate foodborne risks and curb the spread of antimicrobial resistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-025-00172-6.202541088443
2197190.9904Antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia at a tertiary hospital in Zambia. Background: Bloodstream infections and antimicrobial resistance cause global increases in morbidity and mortality. Aim: We evaluated the antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia in humans. Materials & methods: We conducted a retrospective cross-sectional study at the University Teaching Hospitals in Lusaka, Zambia, using Laboratory Information Systems. Results: The commonest isolated bacteria associated with sepsis were Klebsiella pneumoniae. The distribution of bacteria associated with bacteremia in different wards and departments pneumonia. The distribution of bacteria associated with bacteremia in different wards and departments at University Teaching Hospitals was were statistically significant (χ2 = 1211.518; p < 0.001). Conclusion:K. pneumoniae, Escherichia coli, Pantoea agglomerans and Enterococcus species have developed high resistance levels against ampicillin, cefotaxime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole and a very low resistance levels against imipenem and Amikacin.202033315486