COMPLEXES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
75100.9955Global transcriptomics and targeted metabolite analysis reveal the involvement of the AcrAB efflux pump in physiological functions by exporting signaling molecules in Photorhabdus laumondii. In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. Photorhabdus laumondii is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in P. laumondii TT01. Here, we explore the pleiotropic effects of AcrAB in this bacterium. RNA sequencing of ∆acrA compared to wild type revealed growth-phase-specific gene regulation, with stationary-phase cultures showing significant downregulation of genes involved in stilbene, fatty acid, and anthraquinone pigment biosynthesis, as well as genes related to cellular clumping and fimbrial pilin formation. Genes encoding putative LuxR regulators, type VI secretion systems, two-partner secretion systems, and contact-dependent growth inhibition systems were upregulated in ∆acrA. Additionally, exponential-phase cultures revealed reduced expression of genes related to motility in ∆acrA. The observed transcriptional changes were consistent with phenotypic assays, demonstrating that the ∆acrA mutant had altered bioluminescence and defective orange pigmentation due to disrupted anthraquinone production. These findings confirm the role of stilbenes as signaling molecules involved in gene expression, thereby shaping these phenotypes. Furthermore, we showed that AcrAB contributes to swarming and swimming motilities independently of stilbenes. Collectively, these results highlight that disrupting acrAB causes transcriptional and metabolic dysregulation in P. laumondii, likely by impeding the export of key signaling molecules such as stilbenes, which may serve as a ligand for global transcriptional regulators.IMPORTANCERecent discoveries have highlighted Photorhabdus laumondii as a promising source of novel anti-infective compounds, including non-ribosomal peptides and polyketides. One key player in the self-resistance of this bacterium to stilbene derivatives is the AcrAB-TolC complex, which is also a well-known contributor to multidrug resistance. Here, we demonstrate the pleiotropic effects of the AcrAB efflux pump in P. laumondii TT01, impacting secondary metabolite biosynthesis, motility, and bioluminescence. These effects are evident at transcriptional, metabolic, and phenotypic levels and are likely mediated by the efflux of signaling molecules such as stilbenes. These findings shed light on the multifaceted roles of efflux pumps and open avenues to better explore the complexity of resistance-nodulation-division (RND) pump-mediated signaling pathways in bacteria, thereby aiding in combating multidrug-resistant infections.202540920493
58610.9954Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.201324066281
58720.9954The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations.201322992462
76530.9953Yeast ATP-binding cassette transporters: cellular cleaning pumps. Numerous ATP-binding cassette (ABC) proteins have been implicated in multidrug resistance, and some are also intimately connected to genetic diseases. For example, mammalian ABC proteins such as P-glycoproteins or multidrug resistance-associated proteins are associated with multidrug resistance phenomena (MDR), thus hampering anticancer therapy. Likewise, homologues in bacteria, fungi, or parasites are tightly associated with multidrug and antibiotic resistance. Several orthologues of mammalian MDR genes operate in the unicellular eukaryote Saccharomyces cerevisiae. Their functions have been linked to stress response, cellular detoxification, and drug resistance. This chapter discusses those yeast ABC transporters implicated in pleiotropic drug resistance and cellular detoxification. We describe strategies for their overexpression, biochemical purification, functional analysis, and a reconstitution in phospholipid vesicles, all of which are instrumental to better understanding their mechanisms of action and perhaps their physiological function.200516399365
74740.9953S51 Family Peptidases Provide Resistance to Peptidyl-Nucleotide Antibiotic McC. Microcin C (McC)-like compounds are natural Trojan horse peptide-nucleotide antibiotics produced by diverse bacteria. The ribosomally synthesized peptide parts of these antibiotics are responsible for their facilitated transport into susceptible cells. Once inside the cell, the peptide part is degraded, releasing the toxic payload, an isoaspartyl-nucleotide that inhibits aspartyl-tRNA synthetase, an enzyme essential for protein synthesis. Bacteria that produce microcin C-like compounds have evolved multiple ways to avoid self-intoxication. Here, we describe a new strategy through the action of S51 family peptidases, which we name MccG. MccG cleaves the toxic isoaspartyl-nucleotide, rendering it inactive. While some MccG homologs are encoded by gene clusters responsible for biosynthesis of McC-like compounds, most are encoded by standalone genes whose products may provide a basal level of resistance to peptide-nucleotide antibiotics in phylogenetically distant bacteria. IMPORTANCE Here, we identified a natural substrate for a major phylogenetic clade of poorly characterized S51 family proteases from bacteria. We show that these proteins can contribute to a basal level of resistance to an important class of natural antibiotics.202235467414
76050.9952The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Bacteria transcriptional regulators are classified by their functional and sequence similarities. Member of the TetR/AcrR family is two-domain proteins including an N-terminal HTH DNA-binding motif and a C-terminal ligand recognition domain. The C-terminal ligand recognition domain can recognize the very same compounds as their target transporters transferred. TetRs act as chemical sensors to monitor both the cellular environmental dynamics and their regulated genes underlying many events, such as antibiotics production, osmotic stress, efflux pumps, multidrug resistance, metabolic modulation, and pathogenesis. Compounds targeting Mycobacterium tuberculosis ethR represent promising novel antibiotic potentiater. TetR-mediated multidrug efflux pumps regulation might be good target candidate for the discovery of better new antibiotics against drug resistance.201323602932
66560.9952Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis. Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE: Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.202438534119
77670.9951Exploring functional interplay amongst Escherichia coli efflux pumps. Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types - single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems - cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli, here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps.202236318669
74380.9950Expression Profile of Multidrug Resistance Efflux Pumps During Intracellular Life of Adherent-Invasive Escherichia coli Strain LF82. Efflux pumps (EPs) are present in all living cells and represent a large and important group of transmembrane proteins involved in transport processes. In bacteria, multidrug resistance efflux pumps (MDR EPs) confer resistance to antibiotics at different levels and are deeply implicated in the fast and dramatic emergence of antibiotic resistance. Recently, several reports have outlined the great versatility of MDR EPs in exporting a large variety of compounds other than antibiotics, thus promoting bacterial adaptation to a wide range of habitats. In several bacterial pathogens, MDR EPs contribute to increase the virulence potential and are directly involved in the crosstalk with host cells. In this work, we have investigated the possible role of MDR EPs in the infectious process of the adherent-invasive Escherichia coli (AIEC), a group of pathogenic E. coli that colonize the ileal mucosa of Crohn disease (CD) patients causing a strong intestinal inflammation. The results we have obtained indicate that, with the exception of mdtM, all MDR-EPs encoding genes present in E.coli K12 are conserved in the AIEC prototype strain LF82. The analysis of MDR EP expression during LF82 infection of macrophages and epithelial cells reveals that their transcription is highly modulated during the bacterial intracellular life. Notably, some EP genes are regulated in a cell-type specific manner, strongly suggesting that their function is required for LF82 successful infection. AIEC are able to adhere to and invade intestinal epithelial cells and, importantly, to survive and multiply within macrophages. Thus, we further investigated the role of EPs specifically induced by macrophage environment. We present evidence indicating that deletion of mdtEF genes, encoding an MDR EP belonging to the resistance nodulation division (RND) family, significantly impairs survival of LF82 in macrophages and that the wild type phenotype can be restored by trans-complementation with functional MdtEF pump. Altogether, our results indicate a strong involvement of MDR EPs in host pathogen interaction also in AIEC and highlight the contribution of MdtEF to the fitness of LF82 in the macrophage environment.202033013734
74890.9949Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal "translocation domains." These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.201526305955
796100.9949The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective. The multidrug resistance has emerged as a major problem in the treatment of many of the infectious diseases. Tuberculosis (TB) is one of such disease caused by Mycobacterium tuberculosis. There is short term chemotherapy to treat the infection, but the main hurdle is the development of the resistance to antibiotics. This resistance is primarily due to the impermeable mycolic acid rich cell wall of the bacteria and other factors such as efflux of antibiotics from the bacterial cell. The MmpL (Mycobacterial Membrane Protein Large) proteins of mycobacteria are involved in the lipid transport and antibiotic efflux as indicated by the preliminary reports. We present here, comprehensive comparative sequence and structural analysis, which revealed topological signatures shared by the MmpL proteins and RND (Resistance Nodulation Division) multidrug efflux transporters. This provides evidence in support of the notion that they belong to the extended RND permeases superfamily. In silico modelled tertiary structures are in homology with an integral membrane component present in all of the RND efflux pumps. We document internal gene duplication and gene splitting events happened in the MmpL genes, which further elucidate the molecular functions of these putative transporters in an evolutionary perspective.201525841626
8280110.9949Regulation of the Expression of Bacterial Multidrug Exporters by Two-Component Signal Transduction Systems. Bacterial multidrug exporters confer resistance to a wide range of antibiotics, dyes, and biocides. Recent studies have shown that there are many multidrug exporters encoded in bacterial genome. For example, it was experimentally identified that E. coli has at least 20 multidrug exporters. Because many of these multidrug exporters have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbor such large sets of multidrug exporter genes. The key to understanding how bacteria utilize these multiple exporters lies in the regulation of exporter expression. Bacteria have developed signaling systems for eliciting a variety of adaptive responses to their environments. These adaptive responses are often mediated by two-component regulatory systems. In this chapter, the method to identify response regulators that affect expression of multidrug exporters is described.201829177834
589120.9949Insulin Signaling and Insulin Resistance Facilitate Trained Immunity in Macrophages Through Metabolic and Epigenetic Changes. Adaptation of the innate immune system has been recently acknowledged, explaining sustained changes of innate immune responses. Such adaptation is termed trained immunity. Trained immunity is initiated by extracellular signals that trigger a cascade of events affecting cell metabolism and mediating chromatin changes on genes that control innate immune responses. Factors demonstrated to facilitate trained immunity are pathogenic signals (fungi, bacteria, viruses) as well non-pathogenic signals such as insulin, cytokines, adipokines or hormones. These signals initiate intracellular signaling cascades that include AKT kinases and mTOR as well as histone methylases and demethylases, resulting in metabolic changes and histone modifications. In the context of insulin resistance, AKT signaling is affected resulting in sustained activation of mTORC1 and enhanced glycolysis. In macrophages elevated glycolysis readily impacts responses to pathogens (bacteria, fungi) or danger signals (TLR-driven signals of tissue damage), partly explaining insulin resistance-related pathologies. Thus, macrophages lacking insulin signaling exhibit reduced responses to pathogens and altered metabolism, suggesting that insulin resistance is a state of trained immunity. Evidence from Insulin Receptor as well as IGF1Receptor deficient macrophages support the contribution of insulin signaling in macrophage responses. In addition, clinical evidence highlights altered macrophage responses to pathogens or metabolic products in patients with systemic insulin resistance, being in concert with cell culture and animal model studies. Herein, we review the current knowledge that supports the impact of insulin signaling and other insulin resistance related signals as modulators of trained immunity.201931244863
732130.9949Extracellular ATP is an environmental cue in bacteria. In animals and plants, extracellular ATP (eATP) functions as a signal and regulates the immune response. During inflammation, intestinal bacteria are exposed to elevated eATP originating from the mucosa. However, whether bacteria respond to eATP is unclear. Here, we show that non-pathogenic Escherichia coli responds to eATP by modifying its transcriptional and metabolic landscapes. A genome-scale promoter library showed that the response is dependent on time, concentration, and medium and ATP specific. Second messengers and genes related to metabolism, biofilm formation, and envelope stress were regulated downstream of eATP. Metabolomics confirmed that eATP triggers enrichment of compounds with bioactive properties in the host or bacteria. Combined genome-scale modeling revealed modifications to global metabolic and biomass building blocks. Consequently, eATP altered the sensitivity to antibiotics and antimicrobial peptides. Finally, in pathogens, eATP controlled virulence factor expression. Our results indicate that eATP is an environmental cue in prokaryotes, which broadly regulates physiology, antimicrobial resistance, and virulence.202541071676
795140.9949Multidrug resistance in Gram-negative bacteria. Broadly specific, so-called multidrug, efflux mechanisms are now known to contribute significantly to intrinsic and acquired multidrug resistance in a number of Gram-negative bacteria, and the boom in bacterial genomics has confirmed the distribution of these systems in all bacteria. This broad distribution of multidrug transporters lends a certain credibility to suggestions that they play a housekeeping role in the cell, beyond any contributions they may make to antimicrobial efflux and resistance. In many instances, these transporters are dispensable, arguing against their carrying out essential cellular functions; nevertheless, the multiplicity of these broadly specific export systems within a given microorganism, often with overlapping substrate specificity, may explain the dispensability of individual exporters. Whatever their intended function, however, their conservation in so many organisms highlights their probable general importance in antimicrobial resistance, particularly in Gram-negative bacteria whose outer membranes work synergistically with many of these export systems to promote drug exclusion.200111587924
8200150.9949Precisely modulated pathogenicity island interference with late phage gene transcription. Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.201425246539
8282160.9948Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy. Development of drug resistance represents the major cause of cancer therapy failure, determines disease progression and results in poor prognosis for cancer patients. Different mechanisms are responsible for drug resistance. Intrinsic genetic modifications of cancer cells induce the alteration of expression of gene controlling specific pathways that regulate drug resistance: drug transport and metabolism; alteration of drug targets; DNA damage repair; and deregulation of apoptosis, autophagy, and pro-survival signaling. On the other hand, a complex signaling network among the entire cell component characterizes tumor microenvironment and regulates the pathways involved in the development of drug resistance. Gut microbiota represents a new player in the regulation of a patient's response to cancer therapies, including chemotherapy and immunotherapy. In particular, commensal bacteria can regulate the efficacy of immune checkpoint inhibitor therapy by modulating the activation of immune responses to cancer. Commensal bacteria can also regulate the efficacy of chemotherapeutic drugs, such as oxaliplatin, gemcitabine, and cyclophosphamide. Recently, it has been shown that such bacteria can produce extracellular vesicles (EVs) that can mediate intercellular communication with human host cells. Indeed, bacterial EVs carry RNA molecules with gene expression regulatory ability that can be delivered to recipient cells of the host and potentially regulate the expression of genes involved in controlling the resistance to cancer therapy. On the other hand, host cells can also deliver human EVs to commensal bacteria and similarly, regulate gene expression. EV-mediated intercellular communication between commensal bacteria and host cells may thus represent a novel research area into potential mechanisms regulating the efficacy of cancer therapy.202033062956
9334170.9948Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Antibiotic resistance, virulence, and other plasmids in bacteria use toxin-antitoxin gene pairs to ensure their persistence during host replication. The toxin-antitoxin system eliminates plasmid-free cells that emerge as a result of segregation or replication defects and contributes to intra- and interspecies plasmid dissemination. Chromosomal homologs of toxin-antitoxin genes are widely distributed in pathogenic and other bacteria and induce reversible cell cycle arrest or programmed cell death in response to starvation or other adverse conditions. The dissection of the interaction of the toxins with intracellular targets and the elucidation of the tertiary structures of toxin-antitoxin complexes have provided exciting insights into toxin-antitoxin behavior.200312970556
764180.9948Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Pleiotropic drug resistance (PDR) is a well-described phenomenon occurring in fungi. PDR shares several similarities with processes in bacteria and higher eukaryotes. In mammalian cells, multidrug resistance (MDR) develops from an initial single drug resistance, eventually leading to a broad cross-resistance to many structurally and functionally unrelated compounds. Notably, a number of membrane-embedded energy-consuming ATP-binding cassette (ABC) transporters have been implicated in the development of PDR/MDR phenotypes. The yeast Saccharomyces cerevisiae genome harbors some 30 genes encoding ABC proteins, several of which mediate PDR. Therefore, yeast served as an important model organism to study the functions of evolutionary conserved ABC genes, including those mediating clinical antifungal resistance in fungal pathogens. Moreover, yeast cells lacking endogenous ABC pumps are hypersensitive to many antifungal drugs, making them suitable for functional studies and cloning of ABC transporters from fungal pathogens such as Candida albicans. This review discusses drug resistance phenomena mediated by ABC transporters in the model system S. cerevisiae and certain fungal pathogens.200616611035
781190.9948Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown.200312917802