# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5876 | 0 | 0.9893 | Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray. We have developed an oligonucleotide microarray for the detection of biodegradative genes and bacterial diversity and tested it in five contaminated ecosystems. The array has 60-mer oligonucleotide probes comprising 14,327 unique probes derived from 1,057 biodegradative genes and 880 probes representing 110 phylogenetic genes from diverse bacterial communities, and we named it as BiodegPhyloChip. The biodegradative genes are involved in the transformation of 133 chemical pollutants. Validation of the microarray for its sensitivity specificity and quantitation were performed using DNA isolated from well-characterized mixed bacterial cultures also having non-target strains, pure degrader strains, and environmental DNA. Application of the developed array using DNA extracted from five different contaminated sites led to the detection of 186 genes, including 26 genes unique to the individual sites. Hybridization of 16S rRNA probes revealed the presence of bacteria similar to well-characterized genera involved in biodegradation of various pollutants. Genes involved in complete degradation pathways for hexachlorocyclohexane (lin), 1,2,4-trichlorobenzene (tcb), naphthalene (nah), phenol (mph), biphenyl (bph), benzene (ben), toluene (tbm), xylene (xyl), phthalate (pht), Salicylate (sal), and resistance to mercury (mer) were detected with highest intensity. The most abundant genes belonged to the enzyme hydroxylases, monooxygenases, and dehydrogenases which were present in all the five samples. Thus, the array developed and validated here shall be useful in assessing not only the biodegradative potential but also the composition of environmentally useful bacteria, simultaneously, from hazardous ecosystems. | 2011 | 21503758 |
| 5185 | 1 | 0.9892 | Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients. | 2025 | 40595841 |
| 5202 | 2 | 0.9892 | Complete genome sequence data of multidrug-resistant Stenotrophomonas sp. strain SXG-1. Objectives A multidrug-resistant bacterium, Stenotrophomonas sp. SXG-1, was isolated from the liver of diseased hybrid sturgeon from Guizhou province, China. Methods Whole-genome sequencing was performed on the Illumina HiSeq 2500-PE125 platform with MPS (massively parallel sequencing) Illumina technology. All good quality paired reads were assembled using the SOAPdenovo into a number of scaffolds. PHI (Pathogen Host Interactions), VFDB (Virulence Factors of Pathogenic Bacteria) and ARDB (Antibiotic Resistance Genes Database) were used to analyses pathogenicity and drug resistance. Results Here we reported the complete genome sequence of Stenotrophomonas sp. SXG-1, which comprised 4534,602bp in 4077 coding sequences (CDS) with a G+C content of 66.42%. The genome contained 4 gene islands, 72 tRNAs and 13 rRNAs. According to the annotation analysis, strain SXG-1 encoded 22 genes related to the multidrug resistance. In addition to 10 genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, 12 genes of efflux pumps were presented, 9 of which were reported for the first time in Stenotrophomonas maltophilia. Conclusion This was the first complete genome sequence of Stenotrophomonas sp. isolated from the sturgeon. The complete genome sequence of Stenotrophomonas sp. strain SXG-1 may provide insights into the mechanism of antimicrobial resistance and prevent disease. | 2020 | 32311503 |
| 5189 | 3 | 0.9891 | Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. BACKGROUND: Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. RESULTS: Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. CONCLUSIONS: Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota. | 2021 | 34162403 |
| 1788 | 4 | 0.9889 | Draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 strain isolated from radiation-polluted soil and its pathogenic potential. OBJECTIVES: Stenotrophomonas is a genus of Gram-negative bacteria with several potential industrial uses as well as an increasingly relevant pathogen that may cause dangerous nosocomial infections. Here we present the draft genome sequence of a multidrug-resistant Stenotrophomonas sp. B1-1 isolated from radiation-polluted soil in Xinjiang Uyghur Autonomous Region, China. METHODS: The genome of Stenotrophomonas sp. B1-1 was sequenced using a BGISEQ-500 platform. The generated sequencing reads were de novo assembled using SOAPdenovo and the resulting sequences were predicted and annotated to identify antimicrobial resistance genes and virulence factors using the ARDB and VFDB databases, respectively. RESULTS: The Stenotrophomonas sp. B1-1 genome assembly resulted in a total genome size of 4,723,769 bp with a GC content of 67.47%. There were 4280 predicted genes with 68 tRNAs, 2 rRNAs and 163 sRNAs. A number of antimicrobial resistance genes were identified conferring resistance to various antibiotics as well as numerous virulence genes. CONCLUSION: The genome sequence of Stenotrophomonas sp. B1-1 will provide timely information for comparison of the Stenotrophomonas genus and to help further understand the pathogenesis and antimicrobial resistance of this genus. | 2021 | 33373734 |
| 2433 | 5 | 0.9889 | Confirmed low prevalence of Listeria mastitis in she-camel milk delivers a safe, alternative milk for human consumption. She-camel milk is an alternative solution for people allergic to milk; unfortunately, potential harmful bacteria have not been tested in she-camel milk. Listeria monocytogenes is one harmful bacterium that causes adverse health effects if chronically or acutely ingested by humans. The purpose of this study was to estimate the prevalence, characterize the phenotypic, genetic characterization, virulence factors, and antibiopotential harmful bacteria resistance profile of Listeria isolated from the milk of she-camel. Udder milk samples were collected from 100 she-camels and screened for mastitis using the California mastitis test (46 healthy female camels, 24 subclinical mastitic animals and 30 clinical mastitic animals). Samples were then examined for the presence of pathogenic Listeria spp; if located, the isolation of Listeria was completed using the International Organization for Standards technique to test for pathogenicity. The isolates were subjected to PCR assay for virulence-associated genes. Listeria spp. were isolated from 4% of samples and only 1.0% was confirmed as L. monocytogenes. The results of this study provide evidence for the low prevalence of intramammary Listeria infection; additionally, this study concludes she-camel milk in healthy camels milked and harvested in proper hygienic conditions may be used as alternative milk for human consumption. | 2014 | 24161878 |
| 5381 | 6 | 0.9888 | Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG). | 2024 | 38078696 |
| 1786 | 7 | 0.9888 | Correlation analysis of whole genome sequencing of a pathogenic Escherichia coli strain of Inner Mongolian origin. Anal swabs of 1-month-old Holstein calves with diarrhea were collected from an intensive cattle farm, and a highly pathogenic Escherichia coli strain was obtained by isolation and purification. To study the virulence and resistance genes of pathogenic E. coli that cause diarrhea in calves, a strain of E. coli E12 isolated from calf diarrhea samples was used as experimental material in this experiment, and the virulence of the E12 strain were identified by the mouse infection test, and the whole genome map of the E12 strain were obtained by whole-genome sequencing and analyzed for genome characterization. The results showed that the lethality of strain E12 was 100%, the total length of E12-encoded genes was 4,294,530 bp, Cluster of Orthologous Groups of proteins (COG) annotated to 4,194 functional genes, and the virulence genes of sequenced strain E12 were compared with the virulence genes of sequenced strain E12 from the Virulence Factors of Pathogenic Bacteria (VFDB), which contained a total of 366 virulence genes in sequenced strain E12. The analysis of virulence genes of E12 revealed a total of 52 virulence genes in the iron transferrin system, 56 virulence genes in the secretory system, 41 virulence genes in bacterial toxins, and a total of 217 virulence genes in the Adhesin and Invasins group. The antibiotic resistance genes of sequenced strain E12 were identified through the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Research Database, and it was found that its chromosome and plasmid included a total of 127 antibiotic resistance genes in four classes, and that E12 carried 71 genes related to the antibiotic efflux pumps, 36 genes related to antibiotic inactivation, and 14 antibiotic target alteration and reduced penetration into antibiotics, and 6 antibiotic resistance genes, and the resistance phenotypes were consistent with the genotypes. The pathogenic E. coli that causes diarrhea in calves on this ranch contains a large number of virulence and resistance genes. The results provide a theoretical basis for the prevention and treatment of diarrhea and other diseases caused by E. coli disease. | 2024 | 38969720 |
| 5193 | 8 | 0.9888 | Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes. | 2024 | 38128408 |
| 5882 | 9 | 0.9886 | PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. Polymerase chain reaction (PCR) analysis enables rapid and accurate detection of beer-spoilage lactic acid bacteria (LAB). Hop resistance genes, horA and horC, are utilized as genetic markers to determine the spoilage ability of LAB strains. PCR analysis of horA and horC, combined with multiplex PCR methods of 12 beer-spoilage species, enables simultaneous and comprehensive detection easily and inexpensively. | 2019 | 30506252 |
| 6133 | 10 | 0.9885 | Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential. | 2016 | 26706221 |
| 5856 | 11 | 0.9884 | Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization. | 1992 | 1444376 |
| 5465 | 12 | 0.9884 | The genotypic characterization of Streptococcus pluranimalium from aborted bovine fetuses in British Columbia, Canada. INTRODUCTION: Bovine abortions result in significant economic losses to dairy producers, and bacteria are among the most common causes of these abortions. In 2021, Streptococcus pluranimalium was isolated from a dairy abortion case for the first time in British Columbia (BC), Canada. This bacterium has previously been recovered from the reproductive tracts of dairy cattle and various other species, including humans. METHODS: Between 2021 and 2023, S. pluranimalium was isolated from the placenta, fetal lung, and/or fetal abomasal contents of 10 aborted dairy fetuses submitted for routine abortion diagnostics. This study was conducted to better characterize the genotype of these 10 isolates. The histopathology of the bovine abortions was examined, and the BC strains were sequenced using Nanopore technology and underwent bioinformatic analysis. RESULTS: The BC strains had an average genome size of 2,313,582 base pairs and an average GC content of 38.59%. Based on whole genome phylogeny, the BC strains were clustered together and distinctly separated from other publicly available strains of this species from different regions and isolation sources. Through Clusters of Orthologous Groups analysis, the BC strains contained a larger proportion of genes associated with the mobilome. Additionally, although we identified only a few antibiotic resistance genes or virulence factors (VFs) in these strains, several of these genes were located within prophage sequences. DISCUSSION: Although the clinical and pathological significance of these bacteria in most abortion cases remains unclear, our findings underscore the importance of continued surveillance and research into uncommon pathogens to better understand their biology and potential impact on human and animal health. | 2025 | 40574982 |
| 6139 | 13 | 0.9884 | Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications. | 2023 | 38616876 |
| 5468 | 14 | 0.9883 | Whole-genome sequence of a putative pathogenic Bacillus sp. strain SD-4 isolated from cattle feed. OBJECTIVES: The present study describes the draft genome sequence of a novel Bacillus sp. strain SD-4 isolated from animal feed. The study aims to get a deeper insight into antimicrobial resistance and secondary metabolite biosynthetic gene clusters (BGCs) and the association between them. METHODS: The strain SD-4 was preliminarily evaluated for antibacterial activities, motility, biofilm formation, and enterotoxin production using in vitro assays. The genome of strain SD-4 was sequenced using the Illumina HiSeq 2500 platform with paired-end reads. The reads were assembled and annotated using SPAdes and PGAP, respectively. The genome was further analysed using several bioinformatics tools, including TYGS, AntiSMASH, RAST, PlasmidFinder, VFDB, VirulenceFinder, CARD, PathogenFinder, MobileElement finder, IslandViewer, and CRISPRFinder. RESULTS: In vitro assays showed that the strain is motile, synthesises biofilm, and produces an enterotoxin and antibacterial metabolites. The genome analysis revealed that the strain SD-4 carries antimicrobial resistance genes (ARGs), virulence factors, and beneficial secondary metabolite BGCs. Further genome analysis showed interesting genome architectures containing several mobile genetic elements, including two plasmid replicons (repUS22 and rep20), five prophages, and at least four genomic islands (GIs), including one Listeria pathogenicity island LIPI-1. Moreover, the strain SD-4 is identified as a putative human pathogen. CONCLUSION: The genome of strain SD-4 harbours several BGCs coding for biologically active metabolites. It also contains antimicrobial resistance genes and is identified as a potential human pathogen. These results can be used to better comprehend antibiotic resistance in environmental bacteria that are not influenced by human intervention. | 2022 | 35413450 |
| 5880 | 15 | 0.9883 | Distribution of antibiotic resistance and virulence factors among the bacteria isolated from diseased Etroplus suratensis. Considering the emerging concern with the antimicrobial resistance (AMR) evolution, the study has been designed to identify the antibiotic resistance and virulence properties of culturable bacteria isolated from the diseased fish Etroplus suratensis. This has resulted in the purification of 18 morphologically distinct bacterial isolates which were identified by both biochemical and molecular methods. Antibiotic resistance analysis showed the resistance of these isolates to multiple antibiotics and remarkable evolution of AMR. Further screening for virulence factors confirmed five isolates to be positive for haemolytic activity, eight with caseinase, four with DNase, one with gelatinase and three with biofilm-forming properties. In addition to these, the isolates were subjected to PCR-based screening to detect the presence of genes coding for aerolysin and haemolysin. Results showed the presence aerolysin gene in the isolates ESS3.2, ESS3.8, ESI3.3 and ESS3.6, while haemolysin gene was observed to be present in ESG3.1 and ESI3.2. The observed results hence indicate the need for frequent monitoring of these properties among bacterial isolates from diverse environment especially those associated with edible fish. | 2019 | 30944785 |
| 2366 | 16 | 0.9883 | Vancomycin-variable enterococci in sheep and cattle isolates and whole-genome sequencing analysis of isolates harboring vanM and vanB genes. BACKGROUND: Vancomycin resistance encoded by the vanA/B/M genes in enterococci is clinically important because of the transmission of these genes between bacteria. While vancomycin resistance is determined by detecting only vanA and vanB genes by routine analyses, failure to detect vanM resistance causes vancomycin resistance to be overlooked, and clinically appropriate treatment cannot be provided. AIMS: The study aimed to examine the presence of vanM-positive enterococcal isolates in Ankara, Turkey, and to have detailed information about them with sequence analyses. METHODS: Caecal samples were collected from sheep and cattle during slaughter at different slaughterhouses in Ankara, Turkey. Enterococci isolates were identified, confirmed, and analyzed for the presence of vanA/B/M genes. Antibiotic resistance profiles of isolates were determined by the broth microdilution method. A whole genome sequence analysis of the isolates harboring the vanM and vanB genes was performed. RESULTS: 13.7% of enterococcal isolates were determined as Enterococcus faecium and Enterococcus faecalis. 15% of these isolates contained vanB, and 40% were vanM-positive. S98b and C32 isolates were determined to contain 16 CRISPR-Cas elements. 80% of the enterococci isolates were resistant to nitrofurantoin and 15% to ciprofloxacin. The first vanM-positive vancomycin-variable enterococci (VVE) isolates from food-producing animals were identified, and the S98b strain has been assigned to Genbank with the accession number CP104083.1. CONCLUSION: Therefore, new studies are needed to facilitate the identification of vanM-resistant enterococci and VVE strains. | 2023 | 38269016 |
| 3022 | 17 | 0.9882 | Sequencing and characterization of pBM400 from Bacillus megaterium QM B1551. Bacillus megaterium QM B1551 plasmid pBM400, one of seven indigenous plasmids, has been labeled with a selectable marker, isolated, completely sequenced, and partially characterized. A sequence of 53,903 bp was generated, revealing a total of 50 predicted open reading frames (ORFs); 33 were carried on one strand and 17 were carried on the other. These ORFs comprised 57% of the pBM400 sequence. Besides the replicon region and a complete rRNA operon that have previously been described, several interesting genes were found, including genes for predicted proteins for cell division (FtsZ and FtsK), DNA-RNA interaction (FtsK, Int/Rec, and reverse transcriptase), germination (CwlJ), styrene degradation (StyA), and heavy metal resistance (Cu-Cd export and ATPase). Three of the ORF products had high similarities to proteins from the Bacillus anthracis virulence plasmid pXO1. An insertion element with similarity to the IS256 family and several hypothetical proteins similar to those from the chromosomes of other Bacillus and Lactococcus species were present. This study provides a basis for isolation and sequencing of other high-molecular-weight plasmids from QM B1551 and for understanding the role of megaplasmids in gram-positive bacteria. The genes carried by pBM400 suggest a possible role of this plasmid in the survival of B. megaterium in hostile environments with heavy metals or styrene and also suggest that there has been an exchange of genes within the gram-positive bacteria, including pathogens. | 2003 | 14602653 |
| 2423 | 18 | 0.9882 | Toxin gene detection and antibiotic resistance of Clostridium perfringens from aquatic sources. Clostridium perfringens is a zoonotic opportunistic pathogen that produces toxins that can cause necrotic enteritis and even "sudden death disease". This bacterium is widely distributed in the intestines of livestock and human, but there are few reports of distribution in aquatic animals (Hafeez et al., 2022). In order to explore the isolation rate of C. perfringens and the toxin genes they carry, 141 aquatic samples, including clams (Ruditapes philippinarum), oysters (Ostreidae), and mud snails (Bullacta exerata Philippi), were collected from the coastal areas of Shandong Province, China. C. perfringens strains were tested for cpa, cpb, etx, iap, cpb2, cpe, netB, and tpeL genes. 45 clam samples were boiled at 100 °C for 5 min before bacteria isolation. 80 strains were isolated from 141 samples with the positive rate being 57 %.And the positive rates of cooked clams was 87 % which was higher than the average. In detection of 8 toxin genes, all strains tested cpa positive, 3 strains netB positive, and 2 cpb and cpe, respectively. 64 strains were selected to analyze the antibiotic resistance phenotype of 10 antibiotics. The average antibiotic resistance rates of the strains to tetracycline, clindamycin, and ampicillin were 45 %, 20 %, and 16 % respectively, and the MIC of 4 strains to clindamycin was ≥128 μg/mL. A high isolation rate of C. perfringens from aquatic animals was shown, and it was isolated from boiled clams for the first time, in which cpe and netB toxin genes were detected for the first time too. The toxin encoded by cpe gene can cause food poisoning of human, thus the discoveries of this study have certain guiding significance for food safety. Antibiotics resistant C. perfringens of aquatic origin may arise from transmission in the terrestrial environment or from antibiotic contamination of the aquaculture environment and is of public health significance. | 2024 | 38428166 |
| 1784 | 19 | 0.9882 | Draft genome sequence of a multidrug-resistant emerging pathogenic isolate of Vibrio alginolyticus from the Red Sea. The marine ecosystem is a growing reservoir of antimicrobial-resistant bacteria, and thus an emerging risk to human health. In this study, we report the first draft genome sequence of multidrug-resistant Vibrio alginolyticus strain OS1T-47, isolated from an offshore site in the Red Sea. The draft genome of V. alginolyticus OS1T-47 is 5 157 150 bp in length and has DNA G + C content of 44.83%. Strain OS1T-47 possesses 22 antimicrobial resistance genes, including those associated with multidrug-resistant efflux pumps. | 2020 | 33294196 |