# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4492 | 0 | 0.9876 | Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. It has long been speculated that erm and ksgA are related evolutionarily due to their sequence similarity and analogous catalytic reactions. We performed a comprehensive phylogenetic analysis with extensive Erm and KsgA/Dim1 sequences (Dim1 is the eukaryotic ortholog of KsgA). The tree provides insights into the evolutionary history of erm genes, showing early bifurcation of the Firmicutes and the Actinobacteria, and suggesting that the origin of the current erm genes in pathogenic bacteria cannot be explained by recent horizontal gene transfer from antibiotic producers. On the other hand, the phylogenetic analysis cannot support the commonly assumed phylogenetic relationships between erm and ksgA genes, the common ancestry of erm and ksgA or erm descended from preexisting ksgA, because the tree cannot be unequivocally rooted due to insufficient signal and long-branch attraction. The phylogenetic tree indicates that the erm gene underwent frequent horizontal gene transfer and duplication, resulting in phylogenetic anomalies and atypical phenotypes. Several electronically annotated Erm sequences were recognized as candidates for new classes of macrolide-lincosamide-streptogramin B-resistance determinants, sharing less than an 80% amino acid sequence identity with other Erm classes. | 2010 | 20618865 |
| 7739 | 1 | 0.9872 | Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat. | 2024 | 38297006 |
| 7437 | 2 | 0.9872 | Bacteriophages vehiculate a high amount of antibiotic resistance determinants of bacterial origin in the Orne River ecosystem. Aquatic environments are important dissemination routes of antibiotic resistance genes (ARGs) from and to pathogenic bacteria. Nevertheless, in these complex matrices, identifying and characterizing the driving microbial actors and ARG dissemination mechanisms they are involved in remain difficult. We here explored the distribution/compartmentalization of a panel of ARGs and mobile genetic elements (MGEs) in bacteria and bacteriophages collected in the water, suspended material and surface sediments from the Orne River ecosystem (France). By using a new bacteriophage DNA extraction method, we showed that, when packaging bacterial DNA, bacteriophages rather encapsidate both ARGs and MGEs than 16S rRNA genes, i.e. chromosomal fragments. We also show that the bacteria and bacteriophage capsid contents in ARGs/MGEs were similarly influenced by seasonality but that the distribution of ARGs/MGEs between the river physical compartments (water vs. suspended mater vs. sediment) is more impacted when these markers were carried by bacteria. These demonstrations will likely modify our understanding of the formation and fate of transducing viral particles in the environment. Consequently, they will also likely modify our estimations of the relative frequencies of the different horizontal gene transfer mechanisms in disseminating antibiotic resistance by reinforcing the roles played by environmental bacteriophages and transduction. | 2022 | 35672875 |
| 7357 | 3 | 0.9870 | Metagenomic surveys show a widespread diffusion of antibiotic resistance genes in a transect from urbanized to marine protected area. Ports are hot spots of pollution; they receive pollution from land-based sources, marine traffic and port infrastructures. Marine ecosystems of nearby areas can be strongly affected by pollution from port-related activities. Here, we investigated the microbiomes present in sea floor sediments along a transect from the harbour of Livorno (Central Italy) to a nearby marine protected area. Results of 16S rRNA amplicon sequencing and metagenome assembled genomes (MAGs) analyses indicated the presence of different trends of specific bacterial groups (e.g. phyla NB1-j, Acidobacteriota and Desulfobulbales) along the transect, correlating with the measured pollution levels. Human pathogenic bacteria and antibiotic resistance genes (ARGs) were also found. These results demonstrate a pervasive impact of human port activities and highlight the importance of microbiological surveillance of marine sediments, which may constitute a reservoir of ARGs and pathogenic bacteria. | 2025 | 39908950 |
| 7664 | 4 | 0.9869 | A catalog of metagenome-assembled genomes from Amazonian forest and pasture soils. The Amazon rainforest is facing multifaceted anthropogenic pressures, and we previously showed that forest-to-pasture conversion has led to soil microbial communities with distinct genomic traits. Here, we present 69 archaeal and bacterial metagenome-assembled genomes and detail their virulence- and antimicrobial resistance-associated genes. | 2025 | 41036867 |
| 7666 | 5 | 0.9869 | Antibiotic resistance genes allied to the pelagic sediment microbiome in the Gulf of Khambhat and Arabian Sea. Antibiotics have been widely spread in the environments, imposing profound stress on the resistome of the residing microbes. Marine microbiomes are well established large reservoirs of novel antibiotics and corresponding resistance genes. The Gulf of Khambhat is known for its extreme tides and complex sedimentation process. We performed high throughput sequencing and applied bioinformatics techniques on pelagic sediment microbiome across four coordinates of the Gulf of Khambhat to assess the marine resistome, its corresponding bacterial community and compared with the open Arabian Sea sample. We identified a total of 2354 unique types of resistance genes, with most abundant and diverse gene profile in the area that had anthropogenic activities being carried out on-shore. The genes with >1% abundance in all samples included carA, macB, sav1866, tlrC, srmB, taeA, tetA, oleC and bcrA which belonged to the macrolides, glycopeptides and peptide drug classes. ARG enriched phyla distribution was quite varying between all the sites, with Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes among the dominant phyla. Based on the outcomes, we also propose potential biomarker candidates Desulfovibrio, Thermotaga and Pelobacter for antibiotic monitoring in the two of the Gulf samples probable contamination prone environments, and genera Nitrosocccus, Marinobacter and Streptomyces in the rest of the three studied samples. Outcomes support the concept that ARGs naturally originate in environments and human activities contribute to the dissemination of antibiotic resistance. | 2019 | 30412889 |
| 469 | 6 | 0.9869 | Ancient permafrost staphylococci carry antibiotic resistance genes. Background: Permafrost preserves a variety of viable ancient microorganisms. Some of them can be cultivated after being kept at subzero temperatures for thousands or even millions of years. Objective: To cultivate bacterial strains from permafrost. Design: We isolated and cultivated two bacterial strains from permafrost that was obtained at Mammoth Mountain in Siberia and attributed to the Middle Miocene. Bacterial genomic DNA was sequenced with 40-60× coverage and high-quality contigs were assembled. The first strain was assigned to Staphylococcus warneri species (designated MMP1) and the second one to Staphylococcus hominis species (designated MMP2), based on the classification of 16S ribosomal RNA genes and genomic sequences. Results: Genomic sequence analysis revealed the close relation of the isolated ancient bacteria to the modern bacteria of this species. Moreover, several genes associated with resistance to different groups of antibiotics were found in the S. hominis MMP2 genome. Conclusions: These findings supports a hypothesis that antibiotic resistance has an ancient origin. The enrichment of cultivated bacterial communities with ancient permafrost strains is essential for the analysis of bacterial evolution and antibiotic resistance. | 2017 | 28959177 |
| 6793 | 7 | 0.9869 | Interplays between cyanobacterial blooms and antibiotic resistance genes. Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs. | 2023 | 37897871 |
| 9840 | 8 | 0.9869 | The chromosomal organization of horizontal gene transfer in bacteria. Bacterial adaptation is accelerated by the acquisition of novel traits through horizontal gene transfer, but the integration of these genes affects genome organization. We found that transferred genes are concentrated in only ~1% of the chromosomal regions (hotspots) in 80 bacterial species. This concentration increases with genome size and with the rate of transfer. Hotspots diversify by rapid gene turnover; their chromosomal distribution depends on local contexts (neighboring core genes), and content in mobile genetic elements. Hotspots concentrate most changes in gene repertoires, reduce the trade-off between genome diversification and organization, and should be treasure troves of strain-specific adaptive genes. Most mobile genetic elements and antibiotic resistance genes are in hotspots, but many hotspots lack recognizable mobile genetic elements and exhibit frequent homologous recombination at flanking core genes. Overrepresentation of hotspots with fewer mobile genetic elements in naturally transformable bacteria suggests that homologous recombination and horizontal gene transfer are tightly linked in genome evolution.Horizontal gene transfer (HGT) is an important mechanism for genome evolution and adaptation in bacteria. Here, Oliveira and colleagues find HGT hotspots comprising ~ 1% of the chromosomal regions in 80 bacterial species. | 2017 | 29018197 |
| 7476 | 9 | 0.9868 | Bacterial phylogeny structures soil resistomes across habitats. Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny. | 2014 | 24847883 |
| 7374 | 10 | 0.9868 | Unravelling the Portuguese Coastal and Transitional Waters' Microbial Resistome as a Biomarker of Differential Anthropogenic Impact. Portugal mainland and Atlantic archipelagos (Madeira and Azores) provide a wide array of coastal ecosystems with varying typology and degrees of human pressure, which shape the microbial communities thriving in these habitats, leading to the development of microbial resistance traits. The samples collected on the Portuguese northeast Atlantic coast waters show an unequivocal prevalence of Bacteria over Archaea with a high prevalence of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several taxa, such as the Vibrio genus, showed significant correlations with anthropogenic pollution. These anthropogenic pressures, along with the differences in species diversity among the surveyed sites, lead to observed differences in the presence and resistance-related sequences' abundance (set of all metal and antibiotic resistant genes and their precursors in pathogenic and non-pathogenic bacteria). Gene ontology terms such as antibiotic resistance, redox regulation and oxidative stress response were prevalent. A higher number of significant correlations were found between the abundance of resistance-related sequences and pollution, inorganic pressures and density of nearby population centres when compared to the number of significant correlations between taxa abundance at different phylogenetic levels and the same environmental traits. This points towards predominance of the environmental conditions over the sequence abundance rather than the taxa abundance. Our data suggest that the whole resistome profile can provide more relevant or integrative answers in terms of anthropogenic disturbance of the environment, either as a whole or grouped in gene ontology groups, appearing as a promising tool for impact assessment studies which, due to the ubiquity of the sequences across microbes, can be surveyed independently of the taxa present in the samples. | 2022 | 36287893 |
| 7379 | 11 | 0.9867 | Unearthing Antibiotic Resistance Associated with Disturbance-Induced Permafrost Thaw in Interior Alaska. Monitoring antibiotic resistance genes (ARGs) across ecological niches is critical for assessing the impacts distinct microbial communities have on the global spread of resistance. In permafrost-associated soils, climate and human driven disturbances augment near-surface thaw shifting the predominant bacteria that shape the resistome in overlying active layer soils. This thaw is of concern in Alaska, because 85% of land is underlain by permafrost, making soils especially vulnerable to disturbances. The goal of this study is to assess how soil disturbance, and the subsequent shift in community composition, will affect the types, abundance, and mobility of ARGs that compose the active layer resistome. We address this goal through the following aims: (1) assess resistance phenotypes through antibiotic susceptibility testing, and (2) analyze types, abundance, and mobility of ARGs through whole genome analyses of bacteria isolated from a disturbance-induced thaw gradient in Interior Alaska. We found a high proportion of isolates resistant to at least one of the antibiotics tested with the highest prevalence of resistance to ampicillin. The abundance of ARGs and proportion of resistant isolates increased with disturbance; however, the number of ARGs per isolate was explained more by phylogeny than isolation site. When compared to a global database of soil bacteria, RefSoil+, our isolates from the same genera had distinct ARGs with a higher proportion on plasmids. These results emphasize the hypothesis that both phylogeny and ecology shape the resistome and suggest that a shift in community composition as a result of disturbance-induced thaw will be reflected in the predominant ARGs comprising the active layer resistome. | 2021 | 33418967 |
| 6383 | 12 | 0.9867 | Metagenomic analysis of microbiological risk in bioaerosols during biowaste valorization using Musca domestica. Bioconversion using insects has gradually become a promising technology for biowaste management and protein production. However, knowledge about microbiological risk of insect related bioaerosols is sparse and conventional methods failed to provide higher resolved information of environmental microbe. In this study, a metagenomic analysis including microorganisms, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), mobile gene elements (MGEs), and endotoxin distribution in bioaerosols during biowaste conversion via Musca domestica revealed that bioaerosols in Fly rearing room possess the highest ARGs abundances and MGEs diversity. Through a metagenome-assembled genomes (MAGs)-based pipeline, compelling evidence of ARGs/VFGs host assignment and ARG-VFG co-occurrence pattern were provided from metagenomic perspective. Bioaerosols in Bioconversion and Maggot separation zone were identified to own high density of MAGs carrying both ARGs and VFGs. Bacteria in Proteobacteria, Actinobacteriota, and Firmicutes phyla were predominate hosts of ARGs and VFGs. Multidrug-Motility, Multidrug-Adherence, and Beta lactam-Motility pairs were the most common ARG-VFG co-occurrence pattern in this study. Results obtained are of great significance for microbiological risk assessment during housefly biowaste conversion process. | 2023 | 36681377 |
| 7350 | 13 | 0.9867 | The vertical distribution of tetA and intI1 in a deep lake is rather due to sedimentation than to resuspension. Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important. | 2020 | 31926010 |
| 6828 | 14 | 0.9867 | Unraveling antibiotic resistomes associated with bacterial and viral communities in intertidal mudflat aquaculture area. The extensive use of antibiotics in intertidal mudflat aquaculture area has substantially increased the dissemination risk of antibiotic resistance genes (ARGs). As hosts of ARGs, bacteria and virus exert vital effects on ARG dissemination. However, the insights for the interrelationships among ARGs, bacteria, and virus have not been thoroughly explored in intertidal mudflat. Therefore, this study attempts to unravel the occurrence, dissemination, evolution, and driving mechanisms of ARGs associated with bacterial and viral communities using metagenomic sequencing in a typical intertidal mudflat. Abundant and diverse ARGs (22 types and 437 subtypes) were identified and those of ARGs were higher in spring than in autumn. It is worthy noted that virus occupied a more essential position than bacteria for ARGs dissemination through network analysis. Meanwhile, nitrogen exerted indirect effect on ARG profiles by shaping viral and bacterial diversity. According to the results of neutral and null models, deterministic processes dominated the ARG community assembly by controlling sediment nitrogen and antibiotics. Homogeneous and variable selection dominated phylogenetic turnover of ARG community, contributing 46.15% and 45.90% of the total processes, respectively. This study can hence theoretically support for the ARG pollution control and management in intertidal mudflat aquaculture area. | 2023 | 37506645 |
| 7356 | 15 | 0.9867 | Tossed 'good luck' coins as vectors for anthropogenic pollution into aquatic environment. Superstition has it that tossing coins into wells or fountains brings good luck, thereby causing a potential accumulation of microbially contaminated metal particles in the water. Here, we characterized the microbiota and the resistance profile in biofilm on such coins and their surrounding sediments. The study site was a tidal marine lake within a touristic center located in a natural reserve area. Notwithstanding the fact that coin-related biofilms were dominated by typical marine taxa, coin biofilms had specific microbial communities that were different from the communities of the surrounding sediment. Moreover, the communities were different depending on whether the coin were made mainly of steel or of copper. Sequences affiliated with putative pathogens were found on every third coin but were not found in the surrounding sediment. Antibiotic resistance genes (ARGs) were detected on most of the coins, and interestingly, sediments close to the area where coins accumulate had a higher frequency of ARGs. We suggest that the surface of the coins might offer a niche for ARGs and faecal bacteria to survive, and, thus, tossed coins are a potential source and vector for ARGs into the surrounding environment. | 2020 | 31887589 |
| 4173 | 16 | 0.9867 | Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Though numerous studies have shown that gene transfer occurs between distantly related bacterial genera under laboratory conditions, the frequency and breadth of horizontal transfer events in nature remain unknown. Previous evidence for natural intergeneric transfers came from studies of genes in human pathogens, bacteria that colonize the same host. We present evidence that natural transfer of a tetracycline resistance gene, tetQ, has occurred between bacterial genera that normally colonize different hosts. A DNA sequence comparative approach was taken to examine the extent of horizontal tetQ dissemination between species of Bacteroides, the predominant genus of the human colonic microflora, and between species of Bacteroides and of the distantly related genus Prevotella, a predominant genus of the microflora of the rumens and intestinal tracts of farm animals. Virtually identical tetQ sequences were found in a number of isolate pairs differing in taxonomy and geographic origin, indicating that extensive natural gene transmission has occurred. Among the exchange events indicated by the evidence was the very recent transfer of an allele of tetQ usually found in Prevotella spp. to a Bacteroides fragilis strain. | 1994 | 7944364 |
| 7373 | 17 | 0.9867 | Distributional Pattern of Bacteria, Protists, and Diatoms in Ocean according to Water Depth in the Northern South China Sea. Ocean microbiomes provide insightful details about the condition of water and the global impact of marine ecosystems. A fine-scale analysis of ocean microbes may shed light on the dynamics and function of the ocean microbiome community. In this study, we evaluated the changes in the community and function of marine bacteria, protists, and diatoms corresponding to different ocean depths using next-generation sequencing methods. We found that diatoms displayed a potential water-depth pattern in species richness (alpha diversity) and community composition (beta diversity). However, for bacteria and protists, there was no significant relationship between water depth and species richness. This may be related to the biological characteristics of diatoms. The photosynthesis of diatoms and their distribution may be associated with the fluctuating light regime in the underwater climate. Moreover, salinity displayed negative effects on the abundance of some diatom and bacterial groups, which indicates that salinity may be one of the factors restricting ocean microorganism diversity. In addition, compared to the global ocean microbiome composition, function, and antibiotic resistance genes, a water depth pattern due to the fine-scale region was not observed in this study. IMPORTANCE Fine-scale analysis of ocean microbes provides insights into the dynamics and functions of the ocean microbiome community. Here, using amplicon and metagenome sequencing methods, we found that diatoms in the northern South China Sea displayed a potential water-depth pattern in species richness and community composition, which may be related to their biological characteristics. The potential effects of the differences in geographic sites mainly occurred in the diatom and bacterial communities. Moreover, given the correlation between the environmental factors and relative abundance of antibiotic resistance genes (ARGs), the study of ocean ARG distribution patterns should integrate the potential effects of environmental factors. | 2022 | 36222702 |
| 6832 | 18 | 0.9867 | Historical trajectories of antibiotics resistance genes assessed through sedimentary DNA analysis of a subtropical eutrophic lake. Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs. | 2024 | 38621322 |
| 6385 | 19 | 0.9866 | Study on microbes and antibiotic resistance genes in karst primitive mountain marshes - A case study of Niangniang Mountain in Guizhou, China. Previous research on antibiotic resistance genes and microorganisms centered on those in urban sewage treatment plants, breeding farms, hospitals and others with serious antibiotic pollution. However, at present, there are evident proofs that antibiotic resistance genes (ARGs) indeed exist in a primitive environment hardly without any human's footprints. Accordingly, an original karst mountain swamp ecosystem in Niangniang Mountain, Guizhou, China, including herbaceous swamp, shrub swamp, sphagnum bog and forest swamp, was selected to analyze the physical and chemical parameters of sediments. Moreover, microbial compositions, functions, as well as their connections with ARGs were assayed and analyzed using metagenomic technology. The results showed that there was no significant difference in the dominant microorganisms and ARGs in the four marshes, in which the dominant bacteria phyla were Proteobacteria (37.82 %), Acidobacteriota (22.17 %) and Actinobacteriota (20.64 %); the dominant archaea Euryarchaeota. (1.00 %); and the dominant eukaryotes Ascomycota (0.07 %), with metabolism as their major functions. Based on the ARDB database, the number of ARGs annotated reached 209 including 30 subtypes, and the dominant ARGs were all Bacitracin resistance genes (bacA, 84.77 %). In terms of the diversity of microorganisms and ARGs, the herbaceous swamp ranked the top, and the shrub swamp were at the bottom. Correlation analysis between microorganisms and resistance genes showed that, apart from aac2ic, macB, smeE, tetQ, and tetL, other ARGs were positively correlated with microorganisms. Among them, baca coexisted with microorganisms. Pearson correlation analysis results showed that contrary to ARGs, microorganisms were more affected by environmental factors. | 2022 | 36306620 |