# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7055 | 0 | 0.9758 | Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs. | 2020 | 32092547 |
| 3690 | 1 | 0.9758 | High Occurrence Rate of Tetracycline (TC)-Resistant Bacteria and TC Resistance Genes Relates to Microbial Diversity in Sediment of Mekong River Main Waterway. Spatial monitoring of tetracycline (TC)-resistant bacteria in sediments of the Mekong River watershed revealed that the main waterway showed a high occurrence rate of TC-resistant bacteria, whereas Tonle Sap Lake and the Sai Gon estuary did not. The Shannon index (H'), an indicator of ecological diversity, was calculated from denaturing gradient gel electrophoresis (DGGE) profiles, which indicated that the main waterway of the Mekong River had high microbial diversity (high H') compared to Tonle Sap Lake and the Sai Gon estuary; this diversity was positively correlated with the occurrence rate of TC-resistant bacteria. Analysis of ribosomal protection protein (RPP) genes tet(M), tet(S) and tet(W) in the same area also revealed that high diversity was positively correlated with the occurrence rate of RPP genes, suggesting that RPP genes are well conserved across various bacterial species. Further evidence of different genotypes of tet(M) suggests that the drug resistance genes likely have various origins, and are mixed in the sediment. Sediments in this area are therefore potential reservoirs of drug resistance genes. | 2008 | 21558701 |
| 3480 | 2 | 0.9757 | Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM(10)) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 10(4), 5.6 × 10(4) and 5.1 × 10(2) copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment. | 2022 | 35717091 |
| 7087 | 3 | 0.9752 | Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Shellfish-growing areas in marine environments are affected by pollutants that mainly originate from land, including streams, domestic wastewater, and the effluents of wastewater treatment plants (WWTPs), which may function as reservoirs of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). The objective of this study was to identify the occurrence and distribution of antibiotic resistance at five oyster sampling sites and 11 major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Culture-based methods were used to estimate the diversity and abundance of antibiotic-resistant Escherichia coli strains isolated from oysters and major inland pollution sources. The percentages of ARB and multiple antibiotic resistance index values were significantly high in discharge water from small fishing villages without WWTPs. However, the percentages of antibiotic-resistant E. coli isolates from oysters were low, as there was no impact from major inland pollutants. Fourteen ARGs were also quantified from oysters and major inland pollution sources. Although most ARGs except for quinolones were widely distributed in domestic wastewater discharge and effluent from WWTPs, macrolide resistance genes (ermB and msrA) were detected mainly from oysters in Kamak Bay. This study will aid in tracking the sources of antibiotic contamination in shellfish to determine the correlation between shellfish and inland pollution sources. | 2021 | 34226964 |
| 7211 | 4 | 0.9751 | Contribution of Manure-Spreading Operations to Bioaerosols and Antibiotic Resistance Genes' Emission. Manure spreading from farm animals can release antibiotic-resistant bacteria (ARB) carrying antimicrobial resistance genes (ARGs) into the air, posing a potential threat to human and animal health due to the intensive use of antibiotics in the livestock industry. This study analyzed the effect of different manure types and spreading methods on airborne bacterial emissions and antibiotic resistance genes in a controlled setting. Cow, poultry manure, and pig slurry were spread in a confined environment using two types of spreaders (splash plate and dribble bar), and the resulting emissions were collected before, during, and after spreading using high-volume air samplers coupled to a particle counter. Total bacteria, fecal indicators, and a total of 38 different subtypes of ARGs were further quantified by qPCR. Spreading poultry manure resulted in the highest emission rates of total bacteria (10(11) 16S gene copies/kg manure spread), Archaea (10(6) 16S gene copies/kg manure), Enterococcus (10(5) 16S gene copies/kg manure), and E. coli (10(4) 16S gene copies/kg manure), followed by cow manure and pig slurry with splash plates and the dribble bar. Manure spreading was associated with the highest rates of airborne aminoglycoside genes for cow and poultry (10(6) gene copies/kg manure), followed by pig slurry (10(4) gene copies/kg manure). This study shows that the type of manure and spreading equipment can affect the emission rates of airborne bacteria, and ARGs. | 2023 | 37512969 |
| 3498 | 5 | 0.9750 | Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters. | 2021 | 33786766 |
| 7357 | 6 | 0.9750 | Metagenomic surveys show a widespread diffusion of antibiotic resistance genes in a transect from urbanized to marine protected area. Ports are hot spots of pollution; they receive pollution from land-based sources, marine traffic and port infrastructures. Marine ecosystems of nearby areas can be strongly affected by pollution from port-related activities. Here, we investigated the microbiomes present in sea floor sediments along a transect from the harbour of Livorno (Central Italy) to a nearby marine protected area. Results of 16S rRNA amplicon sequencing and metagenome assembled genomes (MAGs) analyses indicated the presence of different trends of specific bacterial groups (e.g. phyla NB1-j, Acidobacteriota and Desulfobulbales) along the transect, correlating with the measured pollution levels. Human pathogenic bacteria and antibiotic resistance genes (ARGs) were also found. These results demonstrate a pervasive impact of human port activities and highlight the importance of microbiological surveillance of marine sediments, which may constitute a reservoir of ARGs and pathogenic bacteria. | 2025 | 39908950 |
| 5320 | 7 | 0.9749 | Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. The spread of antimicrobial-resistant pathogens is a global health concern. Most studies report high levels of antimicrobial resistance genes (ARGs) in the aquatic environment; however, levels associated with sediments are limited. This study aimed to investigate the distribution of ARGs in the sediments and water of the Akaki river in Addis Ababa, Ethiopia. The diversity and abundance of 84 ARGs and 116 clinically important bacteria were evaluated from the sediments and water collected from five sites in the Akaki river. Most of the ARGs were found in the city close to anthropogenic activities. Water samples collected in the middle catchment of the river contained 71-75% of targeted ARGs, with genes encoding aminoglycoside acetyltransferase (aac(6)-Ib-cr), aminoglycoside adenylyl transferase (aadA1), β-lactamase (bla(OXA-10))(,) quinolone resistance S (qnrS), macrolide efflux protein A (mefA), and tetracycline resistance (tetA), were detected at all sampling sites. Much fewer ARGs were detected in all sediments, and those near the hospitals had the highest diversity and level. Despite the lower levels and diversity, there were no unique ARGs detected in the sediments that were also not detected in the waters. A wide range of clinically relevant pathogens were also detected in the Akaki river. The findings suggest that the water phase, rather than the sediments in the Akaki river, is a potential conduit for the spread of ARGs and antibiotic-resistant bacteria. | 2022 | 35583762 |
| 6722 | 8 | 0.9749 | Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new. | 1986 | 2873172 |
| 3542 | 9 | 0.9748 | Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of Bla(TEM) and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of Bla(TEM) and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future. | 2021 | 33445049 |
| 6133 | 10 | 0.9748 | Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential. | 2016 | 26706221 |
| 7269 | 11 | 0.9748 | Sewage from Airplanes Exhibits High Abundance and Diversity of Antibiotic Resistance Genes. Airplane sanitary facilities are shared by an international audience. We hypothesized the corresponding sewage to be an extraordinary source of antibiotic-resistant bacteria (ARB) and resistance genes (ARG) in terms of diversity and quantity. Accordingly, we analyzed ARG and ARB in airplane-borne sewage using complementary approaches: metagenomics, quantitative polymerase chain reaction (qPCR), and cultivation. For the purpose of comparison, we also quantified ARG and ARB in the inlets of municipal treatment plants with and without connection to airports. As expected, airplane sewage contained an extraordinarily rich set of mobile ARG, and the relative abundances of genes were mostly increased compared to typical raw sewage of municipal origin. Moreover, combined resistance against third-generation cephalosporins, fluorochinolones, and aminoglycosides was unusually common (28.9%) among Escherichia coli isolated from airplane sewage. This percentage exceeds the one reported for German clinical isolates by a factor of 8. Our findings suggest that airplane-borne sewage can effectively contribute to the fast and global spread of antibiotic resistance. | 2019 | 31713420 |
| 2604 | 12 | 0.9747 | Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Antimicrobial resistance (AMR) in bacterial pathogens threatens global health, though the spread of AMR bacteria and AMR genes between humans, animals, and the environment is still largely unknown. Here, we investigated the role of wild birds in the epidemiology of AMR Escherichia coli. Using next-generation sequencing, we characterized cephalosporin-resistant E. coli cultured from sympatric gulls and bald eagles inhabiting a landfill habitat in Alaska to identify genetic determinants conferring AMR, explore potential transmission pathways of AMR bacteria and genes at this site, and investigate how their genetic diversity compares to isolates reported in other taxa. We found genetically diverse E. coli isolates with sequence types previously associated with human infections and resistance genes of clinical importance, including bla(CTX-M) and bla(CMY). Identical resistance profiles were observed in genetically unrelated E. coli isolates from both gulls and bald eagles. Conversely, isolates with indistinguishable core-genomes were found to have different resistance profiles. Our findings support complex epidemiological interactions including bacterial strain sharing between gulls and bald eagles and horizontal gene transfer among E. coli harboured by birds. Results suggest that landfills may serve as a source for AMR acquisition and/or maintenance, including bacterial sequence types and AMR genes relevant to human health. | 2018 | 29743625 |
| 3671 | 13 | 0.9746 | Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2016 | 27287338 |
| 3517 | 14 | 0.9746 | Characterization of the bacterioplankton community and its antibiotic resistance genes in the Baltic Sea. The residues from human environments often contain antibiotics and antibiotic resistance genes (ARGs) that can contaminate natural environments; the clearest consequence of that is the selection of antibiotic-resistant bacteria. The Baltic Sea is the second largest isolated brackish water reservoir on Earth, serving as a drainage area for people in 14 countries, which differ from one another in antibiotic use and sewage treatment policies. The aim of this study was to characterize the bacterioplankton structure and quantify ARGs (tetA, tetB, tetM, ermB, sul1, blaSHV, and ampC) within the bacterioplankton community of the Baltic Sea. Quantitative polymerase chain reaction was applied to quantify ARGs from four different sampling sites of the Baltic Sea over 2 years, and the bacterial communities were profiled sequencing the V6 region of the 16S rRNA gene on Illumina HiSeq2000. The results revealed that all the resistance genes targeted in the study were detectable from the Baltic Sea bacterioplankton. The percentage of tetA, tetB, tetM, ermB, and sul1 genes in the sea bacterial community varied between 0.0077% and 0.1089%, 0.0003% and 0.0019%, 0.0001% and 0.0105%, 0% and 0.0136%, and 0.0001% and 0.0438%, respectively. The most numerous ARG detected was the tetA gene and this gene also had the highest proportion in the whole microbial community. A strong association between bacterioplankton ARGs' abundance data and community phylogenetic composition was found, implying that the abundance of most of the studied ARGs in the Baltic Sea is determined by fluctuations in its bacterial community structure. | 2014 | 23941523 |
| 7166 | 15 | 0.9745 | Foam shares antibiotic resistomes and bacterial pathogens with activated sludge in wastewater treatment plants. Foaming is a common operational problem that occurs in activated sludge (AS) from many wastewater treatment plants (WWTPs), but the characteristic of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in foams is generally lacking. Here, we used a metagenomic approach to characterize the profile of ARGs and HPB in foams and AS from full-scale WWTPs receiving pesticide wastewater. No significant difference in the microbial communities was noted between the AS and foam samples. The diversity and abundance of ARGs in the foams were similar to those in the pertinent AS samples. Procrustes analysis suggested that the bacterial community is the major driver of ARGs. Metagenomic assembly also indicated that most ARGs (e.g., multidrug, rifamycin, peptides, macrolide-lincosamide-streptogramin, tetracycline, fluoroquinolone, and beta-lactam resistance genes) were carried by chromosomes rather than mobile genetic elements. Moreover, the relative abundances of HPB, Pseudomonas putida and Mycobacterium smegmatis, were enriched in the foam samples. Nine HPB were identified as carriers of 21 ARG subtypes, of which Pseudomonas aeruginosa could carry 12 ARG subtypes. Overall, this study indicates the prevalence of ARGs, HPB, and ARG-carrying HPB in foams, which highlights the potential risk of foams in spreading ARGs and HPB into the surrounding environments. | 2021 | 33373956 |
| 7358 | 16 | 0.9745 | Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions. Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal. | 2022 | 35016024 |
| 3654 | 17 | 0.9745 | Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen. | 2020 | 32961926 |
| 7097 | 18 | 0.9745 | Markers Specific to Bacteroides fragilis Group Bacteria as Indicators of Anthropogenic Pollution of Surface Waters. The aim of this study was to evaluate the applicability of markers specific to Bacteroides fragilis group (BFG) bacteria as indicators of anthropogenic pollution of surface waters. In addition, the impact of wastewater treatment plants (WWTPs) on the spread of genes specific to fecal indicator bacteria and genes encoding antimicrobial resistance in water bodies was also determined. Samples of hospital wastewater (HWW), untreated wastewater (UWW), and treated wastewater (TWW) evacuated from a WWTP were collected, and samples of river water were taken upstream (URW) and downstream (DRW) from the wastewater discharge point to determine, by qPCR, the presence of genes specific to BFG, Escherichia coli and Enterococcus faecalis, and the abundance of 11 antibiotic resistance genes (ARGs) and two integrase genes. The total number of bacterial cells (TCN) in the examined samples was determined by fluorescence in situ hybridization (FISH). Genes specific to BFG predominated among the analyzed indicator microorganisms in HWW, and their copy numbers were similar to those of genes specific to E. coli and E. faecalis in the remaining samples. The abundance of genes specific to BFG was highly correlated with the abundance of genes characteristic of E. coli and E. faecalis, all analyzed ARGs and intI genes. The results of this study indicate that genes specific to BFG can be used in analyses of human fecal pollution, and as indicators of environmental contamination with ARGs. A significant increase in the copy numbers of genes specific to BFG, E. coli, and seven out of the 11 analyzed ARGs was noted in samples of river water collected downstream from the wastewater discharge point, which suggests that WWTPs are an important source of these genes in riparian environments. | 2020 | 33003501 |
| 7116 | 19 | 0.9744 | Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols. Genes encoding tetracycline resistance and the integrase of Class 1 integrons were enumerated using quantitative PCR from aerosols collected from indoor and outdoor environments. Concentrated animal feeding operations (CAFOs) and human-occupied indoor environments (two clinics and a homeless shelter) were found to be a source of airborne tet(X) and tet(W) genes. The CAFOs had 10- to 100-times higher concentrations of airborne 16S rRNA, tet(X), and tet(W) genes than other environments sampled, and increased concentrations of aerosolized bacteria correlated with increased concentrations of airborne resistance genes. The two CAFOs studied had statistically similar concentrations of resistance genes in their aerosol samples, even though antibiotic use was markedly different between the two operations. Additionally, tet(W) genes were recovered in outdoor air within 2 km of livestock operations, which suggests that antibiotic resistance genes may be transported via aerosols on local scales. The integrase gene (intI1) from Class 1 integrons, which has been associated with multidrug resistance, was detected in CAFOs but not in human-occupied indoor environments, suggesting that CAFO aerosols could serve as a reservoir of multidrug resistance. In conclusion, our results show that CAFOs and clinics are sources of aerosolized antibiotic resistance genes that can potentially be transported via air movement. | 2013 | 23517146 |