# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1402 | 0 | 0.9664 | Detection of β-lactam resistance genes in Gram-negative bacteria from positive blood cultures using a microchip-based molecular assay. BACKGROUND: Accurate detection of β-lactam resistance genes in bloodstream infections is critical for guiding antimicrobial therapy. This study evaluates the Alifax Gram-negative resistance (GNR) microchip assay for detecting β-lactam resistance genes directly from positive blood cultures (PBCs) for Gram-negative (GN) bacteria, including Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. METHODS: Simulated (n=146) and clinical (n=106) GN-PBC samples were tested for bla (KPC), bla (VIM), bla (NDM), bla (IMP), bla (OXA-23)-like, bla (OXA-48)-like, bla (SHV)-ESBL, bla (CTX-M-1/9) group, and bla (CMY-2)-like genes using the GNR microchip assay. Whole-genome sequencing (WGS) served as the reference assay for simulated samples and, selectively, for clinical samples. The bioMérieux BioFire Blood Culture Identification 2 (BCID2) panel assay was used as a comparator for clinical samples. RESULTS: The GNR microchip assay correctly identified 203 (99.5%) of 204 β-lactam resistance genes in simulated samples. One sample tested false negative for a bla (SHV)-ESBL gene but true positive for a bla (KPC) gene. In clinical samples, GNR results were concordant with BCID2 for 113 (100%) of 113 genes included in both assays. Additionally, the GNR assay detected bla (CMY-2) -like (n=6), bla (OXA-23)-like (n=5), and bla (SHV)-ESBL (n=2), which are not targeted by BCID2, all confirmed by WGS. In two β-lactam-resistant P. aeruginosa samples but negative by the GNR assay, WGS confirmed the absence of acquired β-lactam resistance genes, suggesting alternative resistance mechanisms. CONCLUSION: The GNR microchip assay demonstrated high concordance and broader β-lactam resistance gene coverage compared to BCID2, supporting its potential role in routine diagnostics. Further validation in larger, prospective studies is warranted. | 2025 | 40529307 |
| 1485 | 1 | 0.9637 | Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures. The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures. | 2016 | 26904669 |
| 1487 | 2 | 0.9634 | Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. We evaluated the Verigene Gram-negative blood culture (BC-GN) test, a microarray that detects Gram-negative bacteria and several resistance genes. A total of 102 positive blood cultures were tested, and the BC-GN test correctly identified 97.9% of the isolates within its panel. Resistance genes (CTX-M, KPC, VIM, and OXA genes) were detected in 29.8% of the isolates, with positive predictive values of 95.8% (95% confidence interval [CI], 87.7% to 98.9%) in Enterobacteriaceae and 100% (95% CI, 75.9% to 100%) in Pseudomonas aeruginosa and negative predictive values of 100% (95% CI, 93.9% to 100%) and 78.6% (95% CI, 51.0% to 93.6%), respectively. | 2014 | 24478405 |
| 5377 | 3 | 0.9632 | Synthetic lincosamides iboxamycin and cresomycin are active against ocular multidrug-resistant methicillin-resistant Staphylococcus aureus carrying erm genes. OBJECTIVE: Antimicrobial resistance is a global pandemic that poses a major threat to vision health as ocular bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of new synthetic lincosamides in comparison to currently used antibiotics against clinical ocular MRSA isolates. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution for two novel synthetic lincosamides (iboxamycin and cresomycin) and eight comparator antibiotics against a collection of 50 genomically characterised ocular MRSA isolates, including isolates harbouring erm genes (n = 25). RESULTS: Both drugs were active against widespread MRSA clonal complexes CC8 and CC5. The MIC(50) and MIC(90) of iboxamycin were 0.06 and 2 mg/L, respectively. Cresomycin (MIC(50) = 0.06 mg/L) also displayed good activity with an in vitro potency four-fold higher (MIC(90) = 0.5 mg/L) than iboxamycin. In isolates harbouring erm genes, MIC(90) were >16, 2, and 0.5 mg/L for clindamycin, iboxamycin, and cresomycin, respectively. The in vitro potencies of iboxamycin and cresomycin were similar or higher than that of comparator agents and were not impacted by multidrug-resistance phenotypes or by the presence of erm genes when compared with clindamycin. CONCLUSIONS: Our results demonstrate that iboxamycin and cresomycin display potent in vitro activity against ocular MRSA isolates, including multidrug-resistant isolates harbouring erm genes. | 2024 | 39293511 |
| 1477 | 4 | 0.9632 | Multicenter Evaluation of the BIOFIRE Blood Culture Identification 2 Panel for Detection of Bacteria, Yeasts, and Antimicrobial Resistance Genes in Positive Blood Culture Samples. Diagnostic tools that can rapidly identify and characterize microbes growing in blood cultures are important components of clinical microbiology practice because they help to provide timely information that can be used to optimize patient management. This publication describes the bioMérieux BIOFIRE Blood Culture Identification 2 (BCID2) Panel clinical study that was submitted to the U.S. Food & Drug Administration. Results obtained with the BIOFIRE BCID2 Panel were compared to standard-of-care (SoC) results, sequencing results, PCR results, and reference laboratory antimicrobial susceptibility testing results to evaluate the accuracy of its performance. Results for 1,093 retrospectively and prospectively collected positive blood culture samples were initially enrolled, and 1,074 samples met the study criteria and were included in the final analyses. The BIOFIRE BCID2 Panel demonstrated an overall sensitivity of 98.9% (1,712/1,731) and an overall specificity of 99.6% (33,592/33,711) for Gram-positive bacteria, Gram-negative bacteria and yeast targets which the panel is designed to detect. One hundred eighteen off-panel organisms, which the BIOFIRE BCID2 Panel is not designed to detect, were identified by SoC in 10.6% (114/1,074) of samples. The BIOFIRE BCID2 Panel also demonstrated an overall positive percent agreement (PPA) of 97.9% (325/332) and an overall negative percent agreement (NPA) of 99.9% (2,465/2,767) for antimicrobial resistance determinants which the panel is designed to detect. The presence or absence of resistance markers in Enterobacterales correlated closely with phenotypic susceptibility and resistance. We conclude that the BIOFIRE BCID2 Panel produced accurate results in this clinical trial. | 2023 | 37227281 |
| 1475 | 5 | 0.9630 | Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions. | 2020 | 32983057 |
| 1488 | 6 | 0.9630 | Evaluation of an automated rapid diagnostic assay for detection of Gram-negative bacteria and their drug-resistance genes in positive blood cultures. We evaluated the performance of the Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN; Nanosphere, Northbrook, IL, USA), an automated multiplex assay for rapid identification of positive blood cultures caused by 9 Gram-negative bacteria (GNB) and for detection of 9 genes associated with β-lactam resistance. The BC-GN assay can be performed directly from positive blood cultures with 5 minutes of hands-on and 2 hours of run time per sample. A total of 397 GNB positive blood cultures were analyzed using the BC-GN assay. Of the 397 samples, 295 were simulated samples prepared by inoculating GNB into blood culture bottles, and the remaining were clinical samples from 102 patients with positive blood cultures. Aliquots of the positive blood cultures were tested by the BC-GN assay. The results of bacterial identification between the BC-GN assay and standard laboratory methods were as follows: Acinetobacter spp. (39 isolates for the BC-GN assay/39 for the standard methods), Citrobacter spp. (7/7), Escherichia coli (87/87), Klebsiella oxytoca (13/13), and Proteus spp. (11/11); Enterobacter spp. (29/30); Klebsiella pneumoniae (62/72); Pseudomonas aeruginosa (124/125); and Serratia marcescens (18/21); respectively. From the 102 clinical samples, 104 bacterial species were identified with the BC-GN assay, whereas 110 were identified with the standard methods. The BC-GN assay also detected all β-lactam resistance genes tested (233 genes), including 54 bla(CTX-M), 119 bla(IMP), 8 bla(KPC), 16 bla(NDM), 24 bla(OXA-23), 1 bla(OXA-24/40), 1 bla(OXA-48), 4 bla(OXA-58), and 6 blaVIM. The data shows that the BC-GN assay provides rapid detection of GNB and β-lactam resistance genes in positive blood cultures and has the potential to contributing to optimal patient management by earlier detection of major antimicrobial resistance genes. | 2014 | 24705449 |
| 1479 | 7 | 0.9629 | BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Central line-associated bloodstream infection (CLABSI) is among the most serious hospital acquired infections. Therefore, the rapid detection of the causative microorganism is of crucial importance to allow for the appropriate antimicrobial therapy. In the present study, we analyzed the clinical performance of the BioFire FilmArray Blood Culture Identification 2 (BCID2) panel in the identification of 33 microbial species and 10 antibiotic resistance genes in comparison to the VITEK-2 system. A total of 104 blood specimens were included. The FilmArray BCID2 results were concordant with the VITEK-2 system in 69/97 specimens (71.1%). Non-concordance was either due to the detection of more pathogens by the FilmArray BCID2 23/28 (82%) or microbial species were misidentified 5/28 (18%). Hence, in comparison to the VITEK-2 system, the FilmArray BCID2 panel showed an overall sensitivity of 75.8% (95% CI, 66-83%) and an overall specificity of 98% (95% CI, 97-98.8%) in detecting microbial species. For the resistance genes, the FilmArray BCID was able to detect the presence of blaCTX-M gene in 23 Gram-negative isolates, blaNDM and blaOXA-48- like genes in 14 and 13 isolates, respectively. The mecA and mecC genes were found in 23 Staphylococcus species, while mecA, mecC and MREJ genes were found in 4 Staphylococcus aureus isolates. The sensitivity and specificity for detecting resistance genes by the FilmArray BCID2 was 90% (95% CI, 81.4-95%) and 99.6% (95% CI, 99-100%), respectively. As concluded, the present study emphasizes the high sensitivity and specificity of the FilmArray BCID2 in the rapid and reliable detection of different bacteria and fungi from positive blood culture bottles, as well as the accurate detection of various antibiotic resistance markers. | 2022 | 36358274 |
| 1476 | 8 | 0.9628 | Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy. | 2020 | 32179139 |
| 1478 | 9 | 0.9627 | Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the bla(CTX-M) gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals. | 2023 | 36519852 |
| 1412 | 10 | 0.9627 | A highly multiplexed melt-curve assay for detecting the most prevalent carbapenemase, ESBL, and AmpC genes. Resistance to third-generation cephalosporins and carbapenems in Gram-negative bacteria is chiefly mediated by beta-lactamases including extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase enzymes. Routine phenotypic detection methods do not provide timely results, and there is a lack of comprehensive molecular panels covering all important markers. An ESBL/carbapenemase high-resolution melt analysis (HRM) assay (SHV, TEM, CTX-M ESBL families, and NDM, IMP, KPC, VIM and OXA-48-like carbapenemases) and an AmpC HRM assay (16S rDNA control, FOX, MOX, ACC, EBC, CIT, and DHA) were designed and evaluated on 111 Gram-negative isolates with mixed resistance patterns. The sensitivity for carbapenemase, ESBL, and AmpC genes was 96.7% (95% confidence interval [CI]: 82.8-99.9%), 93.6% (95% CI: 85.7-97.9%), and 93.8% (95% CI: 82.8-98.7%), respectively, with a specificity of 100% (95% CI: 95.6-100%), 93.9% (95% CI: 79.8-99.3%), and 93.7% (95% CI: 84.5-98.2%). The HRM assays enable the simultaneous detection of the 14 most important ESBL, carbapenemase, and AmpC genes and could be used as a molecular surveillance tool or to hasten detection of antimicrobial resistance for treatment management. | 2020 | 32521424 |
| 1455 | 11 | 0.9623 | Resistance to bacterial infection, complication occurring after cardiac surgery. To analyze the occurrence of resistant bacterial infection in patients undergoing cardiac surgery hospitalized in the surgical specialty hospital, in Erbil city, Iraq. A prospective study was done on a total of 138 patients operated and hospitalized in an intensive care unit and surgical wards. Bacterial isolates identification was done according to cultural characteristics, microscopic examination, some biochemical tests, analytic Profile Index 20E& API Staph, confirmed with VITEK® 2 compact system (BioMérieux). Antimicrobial susceptibility for disc diffusion tested to 17 antimicrobial agents. Resistance isolates were confirmed phenotypically for carbapenemase by Rapidec Carba NP Test (bioMe´rieux SA, Marcy-l'E´toile, France) for ESBLs producers by ESBL screening test VITEK 2 system. Molecularly blaIMP blaTEM, blaKPC, AmpC and blaCTX-M were detected by PCR. In 134 patients, 28.3% of patients got infected post-operatively. The most frequent source of isolation was from ICU patients (75%). Isolated bacteria included gram-positive 29 (54.7%) and gram-negative bacteria 24 (45.3%). Most frequently: Staphylococcus aureus (24.4%), each of pseudomonas aeroginosa, Klebsiella pneumonia (15.1%), Streptococcus spp. (11.3%), Escherichia coli (9.4%). Whereas included Coagulase Negative Staphylococci species (CoNS) (13.2%) and Enterococci species (5.7) Statistical analysis showed significantly higher sensitive isolates as compared with resistance isolates. Resistance to Carbapenems calss was 18.9% and Cephalosporins class 41.5% of isolates. The antimicrobial resistance pattern indicated that MDR bacterial isolates (81.1%) were widespread. Of the 34 phenotypically ESBL positive isolates, the ESBL genes (AmpC, blaCTX-M, and blaTEM) were amplified in 7(20.6), 6(17.6) and 6(17.6) isolates respectively. Out of 8 K. pneumonia (37.5%) harboring both blaAmpC and bla-CTX-M genes, while 6(75%) carries blaTEM. The blaCTX-M gene was found in only 1 (12.5%) out of 8 isolates of P. aeruginosa. While blaAmpC genotyping revealed that 1(7.7%) out of 13 Staph. aureus isolates were harboring it. Finally, 3(60%) out of 5 E. coli isolates harboring both AmpC and bla-CTX-M genes. Cardiac surgery patients wound show increasingly emerging strains of ESBL-producing gram-negative bacteria K. pneumonia, P. aeruginosa and E. coli especially patients prolonged in the intensive care unit. | 2020 | 34174972 |
| 1454 | 12 | 0.9623 | OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II. | 2023 | 37010165 |
| 1411 | 13 | 0.9623 | Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BACKGROUND: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. RESULTS: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. CONCLUSIONS: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined. | 2021 | 33947325 |
| 2095 | 14 | 0.9621 | In vitro activity of plazomicin against quinolone-resistant gram-negative bacteria isolated from catheter-associated urinary tract infections. Quinolone resistance among uropathogens is an increasing concern. Plazomicin is a new aminoglycoside that shows promising results against resistant bacteria. However, no study has yet tested its effect specifically on quinolone-resistant organisms. This study aimed to evaluate the in vitro activity of plazomicin and comparator drugs against quinolone-resistant Gram-negative isolates of catheter-associated urinary tract infections (CAUTI). Plazomicin demonstrated high inhibiting activity against Enterobacteriaceae isolates (95.9% at MIC≤ 2 mg/L), with MIC(50/90) was 1/2 mg/L. High MICs values were detected against non-Enterobacteriaceae isolates (MIC(50/90), 4/32 mg/L). Plazomicin had susceptibility rate of 97.2% against Enterobacteriaceae isolates carrying aminoglycosides modifying enzymes (AME) genes, while other aminoglycosides, amikacin and gentamicin showed reduced activity (32.4% and 25.4%, respectively). In conclusion, plazomicin showed potent in vitro activity against quinolone-resistant Enterobacteriaceae causing CAUTI, regardless of the AME pattern. | 2021 | 33810779 |
| 1486 | 15 | 0.9620 | Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. | 2015 | 26361710 |
| 1405 | 16 | 0.9618 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 1428 | 17 | 0.9618 | Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI. | 2018 | 29936619 |
| 1418 | 18 | 0.9618 | Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran. | 2023 | 37155016 |
| 1451 | 19 | 0.9618 | Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons. | 2021 | 33923991 |