# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3919 | 0 | 0.9937 | Detection of antibiotic resistance in probiotics of dietary supplements. BACKGROUND: Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. FINDINGS: Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. CONCLUSIONS: This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance. | 2015 | 26370532 |
| 3945 | 1 | 0.9935 | Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents. | 2001 | 11871804 |
| 4308 | 2 | 0.9935 | Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections. | 2021 | 33540588 |
| 4229 | 3 | 0.9935 | Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Over the last 50 years, human life expectancy and quality of life have increased dramatically due to improvements in nutrition and the use of antibiotics in the fight against infectious diseases. However, the heyday of antibiotic treatment is on the wane due to the appearance and spread of resistance among harmful microorganisms. At present, there is great concern that commensal bacterial populations from food and the gastrointestinal tract (GIT) of humans and animals, such as lactic acid bacteria (LAB) and bifidobacteria, could act as a reservoir for antibiotic resistance genes. Resistances could ultimately be transferred to human pathogenic and opportunistic bacteria hampering the treatment of infections. LAB species have traditionally been used as starter cultures in the production of fermented feed and foodstuffs. Further, LAB and bifidobacteria are normal inhabitants of the GIT where they are known to exert health-promoting effects, and selected strains are currently been used as probiotics. Antibiotic resistance genes carried by LAB and bifidobacteria can be transferred to human pathogenic bacteria either during food manufacture or during passage through the GIT. The aim of this review is to address well-stated and recent knowledge on antibiotic resistance in typical LAB and bifidobacteria species. Therefore, the commonest antibiotic resistance profiles, the distinction between intrinsic and atypical resistances, and some of the genetic determinants already discovered will all be discussed. | 2007 | 17418306 |
| 9812 | 4 | 0.9935 | Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis. Here, we review sexually transmitted diseases (STDs) caused by pathogenic bacteria and vaginal infections which result from an overgrowth of opportunistic bacterial microflora. First, we describe the STDs, the corresponding pathogens and the antimicrobials used for their treatment. In addition to the well-known diseases caused by single pathogens (i.e., syphilis, gonococcal infections, and chlamydiosis), we consider polymicrobial reproductive tract infections (especially those that are difficult to effectively clinically manage). Then, we summarize the biochemical mechanisms that lead to antimicrobial resistance and the most recent data on the emergence of drug resistance in STD pathogens and bacteria associated with vaginosis. A large amount of research performed in the last 10-15 years has shed light on the enormous diversity of mechanisms of resistance developed by bacteria. A detailed understanding of the mechanisms of antimicrobials action and the emergence of resistance is necessary to modify existing drugs and to develop new ones directed against new targets. | 2016 | 27242760 |
| 6063 | 5 | 0.9934 | A potentially probiotic strain of Enterococcus faecalis from human milk that is avirulent, antibiotic sensitive, and nonbreaching of the gut barrier. Human milk is a key source of promising probiotic lactic acid bacteria. The Enterococcus species, because of their dual commensal and pathogenic nature, demand critical safety analysis to establish them as probiotic candidates. In this study, eighteen E. faecalis strains from human milk of mothers living in Pakistan were typed at the strain level by riboprinting. The typed strains were then evaluated in vitro for physiological safety and the presence of transmissible antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors. Selected strains were then checked for tolerance to gastrointestinal acid and bile as criteria for probiotic efficacy. Molecular typing revealed that the strains fell into five distinct clusters or ribotypes. Testing revealed that they were non-hemolytic; however, all strains had gelatinase activity except NPL-493. The isolates were susceptible to most clinically important antibiotics except streptomycin. Molecular screening for antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors indicated that none of the strains possessed resistance genes for aminoglycosides, vancomycin, bacitracin, tetracycline, or clindamycin. Most virulence factors were absent except for the genes gelE and efaAs associated with gut adhesion and translocation, which were present in all except NPL-493. Strain NPL-493 was the most promising probiotic candidate demonstrating significant tolerance to the acid, bile, and digestive enzymes in the human GIT and antibacterial activity against multiple pathogens. The study concluded that E. faecalis NPL-493 from human milk was safe among all the strains and could be considered a potential probiotic. | 2022 | 35107663 |
| 4801 | 6 | 0.9934 | Does the use of chloramphenicol in animals jeopardise the treatment of human infections? It has been suggested that the therapeutic use of oral chloramphenicol in animals is liable to select resistance to antibiotics and that the resistance may jeopardise the treatment of infections in man. At present this risk appears minimal; resistance to chloramphenicol in animal bacteria may well be selected by the increasing use of semi-synthetic penicillins because of linkage between genes coding for production of beta-lactamase and resistance to chloramphenicol. Among salmonellae, the strains causing enteric fever have no animal reservoir and the few food poisoning incidents in man that require therapy can be treated with antibacterial agents such as trimethoprim. Chloramphenicol is not now the antibiotic of choice for any human infection except perhaps a few caused by Haemophilus influenzae. Resistance to antibiotics in 'human' cultures has largely been selected by the use of antibiotics in human medicine. Control of salmonellosis is essentially a public health, not a therapeutic problem. | 1984 | 6367204 |
| 4219 | 7 | 0.9934 | Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Lactobacilli are a ubiquitous bacteria, that includes many species commonly found as part of the human microbiota, take part in the natural food fermentation processes, are used as probiotics, and in the food sector as starter cultures or bio-protectors. Their wide use is dictated by a long history of safe employ, which has allowed them to be classified as GRAS (General Recognized As Safe) microorganisms by the US Food and Drug Administration (FDA) and QPS (Qualified Presumption of Safety) by the European Food Safety Authority (EFSA, 2007; EFSA, 2021). Despite their classification as safe microorganisms, several studies show that some members of Lactobacillus genus can cause, especially in individuals with previous pathological conditions, problems such as bacteremia, endocarditis, and peritonitis. In other cases, the presence of virulence genes and antibiotic resistance, and its potential transfer to pathogenic microorganisms constitute a risk to be considered. Consequently, their safety status was sometimes questioned, and it is, therefore, essential to carry out appropriate assessments before their use for any purposes. The following review focuses on the state of the art of studies on genes that confer virulence factors, including antibiotic resistance, reported in the literature within the lactobacilli, defining their genetic basis and related functions. | 2022 | 35082060 |
| 4753 | 8 | 0.9934 | Vancomycin-resistant enterococci. Enterococci, a part of normal gut flora, are not particularly pathogenic organisms in humans. For example, they do not cause respiratory tract infections. The most frequent enterococcal infections are urinary tract infections. Despite their lack of pathogenicity, enterococci have emerged as significant nosocomial pathogens in the United States and elsewhere. Enterococci are formidable pathogens because of their resistance to antimicrobial agents. Enterococci are intrinsically resistant to beta-lactam agents and aminoglycosides and were the first bacteria to acquire vancomycin resistance. Infection control measures have been far from effective at preventing the dissemination of vancomycin-resistant enterococci in the hospital. Therapy for infections due to vancomycin-resistant enterococci presents real challenges. Most isolates remain susceptible to nitrofurantoin, but this agent is useful only for urinary tract infections. The greatest threat posed by vancomycin-resistant enterococci is the potential to transfer their resistance genes to more pathogenic gram-positive bacteria, which could produce truly frightening pathogens. | 1998 | 9597252 |
| 9810 | 9 | 0.9934 | Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill. | 2023 | 39816646 |
| 8467 | 10 | 0.9934 | The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects. | 2022 | 35456875 |
| 4633 | 11 | 0.9934 | Detection of Helicobacter pylori virulence-associated genes. Helicobacter pylori is an important human pathogen and persistent colonization of the human gastric mucosa can cause severe gastrointestinal diseases. The bacterium should not be considered as a uniform organism, but as a population of closely related and yet genetically diverse bacteria. Several genes of H. pylori (such as vacA and cagA) have been identified as being virulence-associated and may have important clinical and epidemiological implications. Assessment of virulence-associated genes of H. pylori should be included in clinical and epidemiological studies as well as therapeutic trials, in order to stratify between patient groups, harboring H. pylori strains with particular virulence genotypes. Molecular determination of antibiotic resistance will be especially useful for treatment studies. Together with our increasing knowledge about the human genome, typing of H. pylori will facilitate the management of gastroenterological pathologies. | 2001 | 11901834 |
| 3917 | 12 | 0.9934 | Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. | 2015 | 26002560 |
| 6056 | 13 | 0.9934 | Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems. | 2014 | 24960293 |
| 5809 | 14 | 0.9934 | Genomic epidemiology of Streptococcus agalactiae ST283 in Southeast Asia. Streptococcus agalactiae, also known as Lancefield Group B Streptococcus (GBS), is typically regarded as a neonatal pathogen; however, several studies have shown that the bacteria are capable of causing invasive diseases in non-pregnant adults as well. The majority of documented cases were from Southeast Asian countries, and the most common genotype found was ST283, which is also known to be able to infect fish. This study sequenced 12 GBS ST283 samples collected from adult patients in Thailand. Together with publicly available sequences, we performed temporo-spatial analysis and estimated population dynamics of the bacteria. Putative drug resistance genes were also identified and characterized, and the drug resistance phenotypes were validated experimentally. The results, together with historical records, draw a detailed picture of the past transmission history of GBS ST283 in Southeast Asia. | 2022 | 35264716 |
| 4802 | 15 | 0.9934 | Acquired resistance to macrolide-lincosamide-streptogramin antibiotics in lactic Acid bacteria of food origin. Antibiotic resistance is a growing problem in clinical settings as well as in food industry. Lactic acid bacteria (LAB) commercially used as starter cultures and probiotic supplements are considered as reservoirs of several antibiotic resistance genes. Macrolide-lincosamide-streptogramin (MLS) antibiotics have a proven record of excellence in clinical settings. However, the intensive use of tylosin, lincomysin and virginamycin antibiotics of this group as growth promoters in animal husbandry and poultry has resulted in development of resistance in LAB of animal origin. Among the three different mechanisms of MLS resistance, the most commonly observed in LAB are the methylase and efflux mediated resistance. This review summarizes the updated information on MLS resistance genes detected and how resistance to these antibiotics poses a threat when present in food grade LAB. | 2012 | 24293706 |
| 4224 | 16 | 0.9934 | The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed. | 2018 | 30123208 |
| 3920 | 17 | 0.9933 | Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Antibiotic Resistance is a growing concern for public health and global economy. Lactic acid bacteria (LAB) involved in the production of dairy products and commonly present in the agro-zootechnical environment can act as reservoirs of antibiotic resistance genes, acquiring or transferring them to other microorganisms. The review focuses on LAB group of dairy origin (Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Pediococcus and Weissella) and Bifidobacterium genus, considering its large use in dairy industry. We have analyzed data in the last 25 years, highlighting atypical resistance, genetic traits correlated to antibiotic resistance and their ability to be transmitted to other microorganisms; comparative analysis of resistomes was also considered. Differences were observed among wild strains isolated from different regions because of authorized antibiotic use. Commercial strains belonging to Lactobacillus, Streptococcus and Bifidobacterium currently used for industrial dairy products are frequently resistant to gentamycin, kanamycin, chloramphenicol together with tetracycline. The presence of resistant wild LAB in raw milk products has been significantly reduced as a result of worldwide restrictions on the use of antibiotics in animal husbandry. Transmissible resistances are still present in industrial cultures, despite the great effort of starter industries in the process control and the safety screening of commercial cultures. | 2022 | 35287818 |
| 4217 | 18 | 0.9933 | Antimicrobial use and resistance in animals. Food animals in the United States are often exposed to antimicrobials to treat and prevent infectious disease or to promote growth. Many of these antimicrobials are identical to or closely resemble drugs used in humans. Precise figures for the quantity of antimicrobials used in animals are not publicly available in the United States, and estimates vary widely. Antimicrobial resistance has emerged in zoonotic enteropathogens (e.g., Salmonella spp., Campylobacter spp.), commensal bacteria (e.g., Escherichia coli, enterococci), and bacterial pathogens of animals (e.g., Pasteurella, Actinobacillus spp.), but the prevalence of resistance varies. Antimicrobial resistance emerges from the use of antimicrobials in animals and the subsequent transfer of resistance genes and bacteria among animals and animal products and the environment. To slow the development of resistance, some countries have restricted antimicrobial use in feed, and some groups advocate similar measures in the United States. Alternatives to growth-promoting and prophylactic uses of antimicrobials in agriculture include improved management practices, wider use of vaccines, and introduction of probiotics. Monitoring programs, prudent use guidelines, and educational campaigns provide approaches to minimize the further development of antimicrobial resistance. | 2002 | 11988879 |
| 2539 | 19 | 0.9933 | Comparative Genome Analysis of Canine Frederiksenia canicola Isolates. Background/Objectives: The One Health approach is crucial for managing and controlling the spread of antimicrobial resistance. Frederiksenia canicola is a recently identified bacterial species that seems to be a component of the oral microbiota of dogs; however, its pathogenic nature is questionable. Methods: In this study, the antibacterial susceptibility of F. canicola isolates was determined using the disk diffusion and broth microdilution methods. Genome-wide comparative analyses were performed to identify the genetic factors driving virulence and antimicrobial drug resistance (e.g., virulence factors, antimicrobial resistance genes (ARGs) and prophage-related sequences). Results: Most of the F. canicola isolates lacked virulence-associated genes. F. canicola is likely resistant to clindamycin, lincomycin and neomycin, but susceptible to penicillin, erythromycin and enrofloxacin. Antimicrobial resistance genes were not found in the F. canicola genomes, but prophage-related sequences were identified, suggesting its potential in the transfer of genes associated with drug resistance between bacteria in the oral microbiome. Conclusions: F. canicola is presumably a commensal organism with low virulence potential, as evidenced by the absence of virulence-associated genes. As F. canicola can colonize a wide range of hosts, including humans, further investigation with a greater number of isolates is needed to better understand the role of F. canicola in disease development and the spread of drug resistance. | 2024 | 39766625 |