# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 4598 | 0 | 0.9955 | Enterococci of animal origin and their significance for public health. Enterococci are commensal bacteria in the intestines of humans and animals, but also cause infections in humans. Most often, Enterococcus faecium isolates from clinical outbreaks belong to different types than E. faecium from animals, food, and humans in the community. The same variants of the vanA gene cluster (Tn1546) encoding vancomycin resistance can be detected in enterococci of both human and animal origin. This could indicate horizontal transfer of Tn1546 between enterococci of different origin. E. faecium isolates of animal origin might not constitute a human hazard in themselves, but they could act as donors of antimicrobial resistance genes for other pathogenic enterococci. Enterococcus faecalis of animal origin seems to be a human hazard, as the same types can be detected in E. faecalis from animals, meat, faecal samples from humans in the community, and patients with bloodstream infections. | 2012 | 22487203 |
| 4597 | 1 | 0.9955 | Antimicrobial-resistant enterococci in animals and meat: a human health hazard? Enterococcus faecium and Enterococcus faecalis belong to the gastrointestinal flora of humans and animals. Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The use of avoparcin, gentamicin, and virginiamycin for growth promotion and therapy in food animals has lead to the emergence of vancomycin- and gentamicin-resistant enterococci and quinupristin/dalfopristin-resistant E. faecium in animals and meat. This implies a potential risk for transfer of resistance genes or resistant bacteria from food animals to humans. The genes encoding resistance to vancomycin, gentamicin, and quinupristin/dalfopristin have been found in E. faecium of human and animal origin; meanwhile, certain clones of E. faecium are found more frequently in samples from human patients, while other clones predominate in certain animal species. This may suggest that antimicrobial-resistant E. faecium from animals could be regarded less hazardous to humans; however, due to their excellent ability to acquire and transfer resistance genes, E. faecium of animal origin may act as donors of antimicrobial resistance genes for other more virulent enterococci. For E. faecalis, the situation appears different, as similar clones of, for example, vancomycin- and gentamicin-resistant E. faecalis have been obtained from animals and from human patients. Continuous surveillance of antimicrobial resistance in enterococci from humans and animals is essential to follow trends and detect emerging resistance. | 2010 | 20578915 |
| 6628 | 2 | 0.9954 | Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface. | 2019 | 31599545 |
| 3941 | 3 | 0.9954 | Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective. | 2023 | 37106925 |
| 6622 | 4 | 0.9954 | Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth-generation cephalosporins) are of especially great concern. | 2009 | 19231979 |
| 5011 | 5 | 0.9953 | Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal. | 2020 | 32042963 |
| 5605 | 6 | 0.9953 | Antibiotic resistance in conjunctival and enteric bacterial flora in raptors housed in a zoological garden. Antimicrobial resistance (AMR) in a wide range of infectious agents is a growing public health threat. Birds of prey are considered indicators of the presence of AMR bacteria in their ecosystem because of their predatory behaviour. Only few data are reported in the literature on AMR strains isolated from animals housed in zoos and none about AMR in raptors housed in zoological gardens. This study investigated the antibiotic sensitivity profile of the isolates obtained from the conjunctival and cloacal bacterial flora of 14 healthy birds of prey, 6 Accipitriformes, 3 Falconiformes and 5 Strigiformes, housed in an Italian zoological garden. Staphylococcus spp. was isolated from 50% of the conjunctival swabs, with S. xylosus as the most common species. From cloacal swabs, Escherichia coli was cultured from all animals, while Klebsiella spp. and Proteus spp. were isolated from a smaller number of birds. Worthy of note is the isolation of Escherichia fergusonii and Serratia odorifera, rarely isolated from raptors. Staphylococci were also isolated. All the isolates were multidrug resistant (MDR). To the author's knowledge, this is the first report regarding the presence of MDR strains within raptors housed in a zoological garden. Since resistance genes can be transferred to other pathogenic bacteria, this represents a potential hazard for the emergence of new MDR pathogens. In conclusion, the obtained data could be useful for ex-situ conservation programmes aimed to preserve the health of the endangered species housed in a zoo. | 2016 | 29067199 |
| 5744 | 7 | 0.9953 | Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. | 2016 | 27506509 |
| 3945 | 8 | 0.9953 | Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents. | 2001 | 11871804 |
| 3750 | 9 | 0.9952 | Non-faecium non-faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes. | 2024 | 38466110 |
| 1977 | 10 | 0.9952 | Comparative Genomics of Emerging Lineages and Mobile Resistomes of Contemporary Broiler Strains of Salmonella Infantis and E. coli. INTRODUCTION: Commensal and pathogenic strains of multidrug-resistant (MDR) Escherichia coli and non-typhoid strains of Salmonella represent a growing foodborne threat from foods of poultry origin. MDR strains of Salmonella Infantis and E. coli are frequently isolated from broiler chicks and the simultaneous presence of these two enteric bacterial species would potentially allow the exchange of mobile resistance determinants. OBJECTIVES: In order to understand possible genomic relations and to obtain a first insight into the potential interplay of resistance genes between enteric bacteria, we compared genomic diversity and mobile resistomes of S. Infantis and E. coli from broiler sources. RESULTS: The core genome MLST analysis of 56 S. Infantis and 90 E. coli contemporary strains revealed a high genomic heterogeneity of broiler E. coli. It also allowed the first insight into the genomic diversity of the MDR clone B2 of S. Infantis, which is endemic in Hungary. We also identified new MDR lineages for S. Infantis (ST7081 and ST7082) and for E. coli (ST8702 and ST10088). Comparative analysis of antibiotic resistance genes and plasmid types revealed a relatively narrow interface between the mobile resistomes of E. coli and S. Infantis. The mobile resistance genes tet(A), aadA1, and sul1 were identified at an overall high prevalence in both species. This gene association is characteristic to the plasmid pSI54/04 of the epidemic clone B2 of S. Infantis. Simultaneous presence of these genes and of IncI plasmids of the same subtype in cohabitant caecal strains of E. coli and S. Infantis suggests an important role of these plasmid families in a possible interplay of resistance genes between S. Infantis and E. coli in broilers. CONCLUSION: This is the first comparative genomic analysis of contemporary broiler strains of S. Infantis and E. coli. The diversity of mobile resistomes suggests that commensal E. coli could be potential reservoirs of resistance for S. Infantis, but so far only a few plasmid types and mobile resistance genes could be considered as potentially exchangeable between these two species. Among these, IncI1 plasmids could make the greatest contribution to the microevolution and genetic interaction between E. coli and S. Infantis. | 2021 | 33717039 |
| 2563 | 11 | 0.9952 | Dissemination of Resistant Escherichia coli Among Wild Birds, Rodents, Flies, and Calves on Dairy Farms. Antimicrobial resistance (AMR) in bacteria in the livestock is a growing problem, partly due to inappropriate use of antimicrobial drugs. Antimicrobial use (AMU) occurs in Swedish dairy farming but is restricted to the treatment of sick animals based on prescription by a veterinary practitioner. Despite these strict rules, calves shedding antimicrobial resistant Enterobacteriaceae have been recorded both in dairy farms and in slaughterhouses. Yet, not much is known how these bacteria disseminate into the local environment around dairy farms. In this study, we collected samples from four animal sources (fecal samples from calves, birds and rodents, and whole flies) and two environmental sources (cow manure drains and manure pits). From the samples, Escherichia coli was isolated and antimicrobial susceptibility testing performed. A subset of isolates was whole genome sequenced to evaluate relatedness between sources and genomic determinants such as antimicrobial resistance genes (ARGs) and the presence of plasmids were assessed. We detected both ARGs, mobile genetic elements and low rates of AMR. In particular, we observed four potential instances of bacterial clonal sharing in two different animal sources. This demonstrates resistant E. coli dissemination potential within the dairy farm, between calves and scavenger animals (rodents and flies). AMR dissemination and the zoonotic AMR risk is generally low in countries with low and restricted AMU. However, we show that interspecies dissemination does occur, and in countries that have little to no AMU restrictions this risk could be under-estimated. | 2022 | 35432261 |
| 5559 | 12 | 0.9952 | Common phenotypic and genotypic antimicrobial resistance patterns found in a case study of multiresistant E. coli from cohabitant pets, humans, and household surfaces. The objective of the study described in this article was to characterize the antimicrobial resistance profiles among E. coli strains isolated from cohabitant pets and humans, evaluating the concurrent colonization of pets, owners, and home surfaces by bacteria carrying the same antimicrobial-resistant genes. The authors also intended to assess whether household surfaces and objects could contribute to the within-household antimicrobial-resistant gene diffusion between human and animal cohabitants. A total of 124 E. coli strains were isolated displaying 24 different phenotypic patterns with a remarkable percentage of multiresistant ones. The same resistance patterns were isolated from the dog's urine, mouth, the laundry floor, the refrigerator door, and the dog's food bowl. Some other multiresistant phenotypes, as long as resistant genes, were found repeatedly in different inhabitants and surfaces of the house. Direct, close contact between all the cohabitants and the touch of contaminated household surfaces and objects could be an explanation for these observations. | 2013 | 23397653 |
| 3667 | 13 | 0.9952 | An Overview on Streptococcus bovis/Streptococcus equinus Complex Isolates: Identification to the Species/Subspecies Level and Antibiotic Resistance. Streptococcus bovis/Streptococcus equinus complex (SBSEC), a non-enterococcal group D Streptococcus spp. complex, has been described as commensal bacteria in humans and animals, with a fecal carriage rate in humans varying from 5% to over 60%. Among streptococci, SBSEC isolates represent the most antibiotic-resistant species-with variable resistance rates reported for clindamycin, erythromycin, tetracycline, and levofloxacin-and might act as a reservoir of multiple acquired genes. Moreover, reduced susceptibility to penicillin and vancomycin associated with mobile genetic elements have also been detected, although rarely. Since the association of SBSEC bacteremia and colon lesions, infective endocarditis and hepatobiliary diseases has been established, particularly in elderly individuals, an accurate identification of SBSEC isolates to the species and subspecies level, as well as the evaluation of antibiotic resistance, are needed. In this paper, we reviewed the major methods used to identify SBSEC isolates and the antimicrobial resistance rates reported in the scientific literature among SBSEC species. | 2019 | 30678042 |
| 3940 | 14 | 0.9952 | Chicken Meat-Associated Enterococci: Influence of Agricultural Antibiotic Use and Connection to the Clinic. Industrial farms are unique, human-created ecosystems that provide the perfect setting for the development and dissemination of antibiotic resistance. Agricultural antibiotic use amplifies naturally occurring resistance mechanisms from soil ecologies, promoting their spread and sharing with other bacteria, including those poised to become endemic within hospital environments. To better understand the role of enterococci in the movement of antibiotic resistance from farm to table to clinic, we characterized over 300 isolates of Enterococcus cultured from raw chicken meat purchased at U.S. supermarkets by the Consumers Union in 2013. Enterococcus faecalis and Enterococcus faecium were the predominant species found, and antimicrobial susceptibility testing uncovered striking levels of resistance to medically important antibiotic classes, particularly from classes approved by the FDA for use in animal production. While nearly all isolates were resistant to at least one drug, bacteria from meat labeled as raised without antibiotics had fewer resistances, particularly for E. faecium Whole-genome sequencing of 92 isolates revealed that both commensal- and clinical-isolate-like enterococcal strains were associated with chicken meat, including isolates bearing important resistance-conferring elements and virulence factors. The ability of enterococci to persist in the food system positions them as vehicles to move resistance genes from the industrial farm ecosystem into more human-proximal ecologies.IMPORTANCE Bacteria that contaminate food can serve as a conduit for moving drug resistance genes from farm to table to clinic. Our results show that chicken meat-associated isolates of Enterococcus are often multidrug resistant, closely related to pathogenic lineages, and harbor worrisome virulence factors. These drug-resistant agricultural isolates could thus represent important stepping stones in the evolution of enterococci into drug-resistant human pathogens. Although significant efforts have been made over the past few years to reduce the agricultural use of antibiotics, continued assessment of agricultural practices, including the roles of processing plants, shared breeding flocks, and probiotics as sources for resistance spread, is needed in order to slow the evolution of antibiotic resistance. Because antibiotic resistance is a global problem, global policies are needed to address this threat. Additional measures must be taken to mitigate the development and spread of antibiotic resistance elements from farms to clinics throughout the world. | 2019 | 31471308 |
| 6629 | 15 | 0.9952 | The rise of antibiotic resistance in Campylobacter. PURPOSE OF REVIEW: Campylobacter is a major foodborne pathogen that infects the human intestinal tract. This review discusses the current status of antibiotic resistance, transmission of antibiotic resistance genes, and strategies to combat the global Campylobacter epidemic. RECENT FINDINGS: Over the past 18 months, articles on Campylobacter antibiotic resistance have been published in ∼39 countries. Antibiotic-resistant Campylobacter have been detected in humans, livestock, poultry, wild animals, the environment, and food. Campylobacter spp. are resistant to a wide spectrum of antimicrobial agents, including the antibiotics quinolones, macrolides, tetracyclines, aminoglycosides, and chloramphenicols. Multidrug resistance is a globally emerging problem. Continuous antibiotic pressure promotes the spread of drug-resistant Campylobacter spp. Additionally, Campylobacter is well adapted to acquiring foreign drug resistance genes, including ermB, optrA, fexA, and cfrC, which are usually acquired from gram-positive bacteria. SUMMARY: The widespread use of antibiotics has caused a global epidemic of drug-resistant Campylobacter infections. Many countries are actively reducing the use of antibiotics and adopting alternatives in the livestock and poultry industries to control the spread of drug-resistant Campylobacter spp. | 2023 | 36504031 |
| 5563 | 16 | 0.9952 | Exploring the Prevalence of Antimicrobial Resistance in Salmonella and commensal Escherichia coli from Non-Traditional Companion Animals: A Pilot Study. Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z(15) and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment. | 2024 | 38398679 |
| 5012 | 17 | 0.9952 | Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets. | 2011 | 21462862 |
| 5560 | 18 | 0.9952 | Linezolid- and Multidrug-Resistant Enterococci in Raw Commercial Dog Food, Europe, 2019-2020. We describe enterococci in raw-frozen dog food commercialized in Europe as a source of genes encoding resistance to the antibiotic drug linezolid and of strains and plasmids enriched in antibiotic-resistance and virulence genes in hospitalized patients. Whole-genome sequencing was fundamental to linking isolates from dog food to human cases across Europe. | 2021 | 34287135 |
| 3947 | 19 | 0.9952 | Human health hazard from antimicrobial-resistant enterococci in animals and food. The use of antimicrobial agents in the modern farm industry has created a reservoir of resistant bacteria in food animals. Foods of animal origin are often contaminated with enterococci that are likely to contribute resistance genes, virulence factors, or other properties to enterococci IN humans. The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial-resistant animal enterococci should be disregarded as a human health hazard. On the basis of review of the literature, we find that neither the results provided by molecular typing that classify enterococci as host-specific organisms nor the occurrence of specific nosocomial clones of enterococci provide reasons to change the current view that antimicrobial-resistant enterococci from animals pose a threat to human health. On the contrary, antimicrobial resistance genes appear to spread freely between enterococci from different reservoirs, irrespective of their apparent host association. | 2006 | 16941376 |