COMBINES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
816100.9908Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies.202540914328
919210.9898Antimicrobial peptides: Sustainable application informed by evolutionary constraints. The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future.202235752270
817220.9898From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review. The growing challenge of antimicrobial resistance (AMR) poses a significant and increasing risk to public health worldwide, necessitating innovative strategies to restore the efficacy of antibiotics. The precise genome-editing abilities of the CRISPR-Cas system have made it a potent instrument for directly targeting and eliminating antibiotic resistance genes. This review explored the mechanisms and applications of CRISPR-Cas systems in combating AMR. The latest developments in CRISPR technology have broadened its potential use, encompassing programmable antibacterial agents and improved diagnostic methods for antibiotic-resistant infections. Nevertheless, several challenges must be overcome for clinical success, including the survival of resistant bacteria, generation of anti-CRISPR proteins that reduce effectiveness, and genetic modifications that change target sequences. Additionally, the efficacy of CRISPR-Cas systems differs across bacterial species, making their universal application challenging. After overcoming these challenges, CRISPR-Cas has the potential to revolutionize AMR treatment, restore antibiotic efficacy, and reshape infection control.202539404843
919130.9897Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.202438511958
917440.9897Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings.202337268007
817050.9897Exploring molecular mechanisms of drug resistance in bacteria and progressions in CRISPR/Cas9-based genome expurgation solutions. Antibiotic resistance in bacteria is a critical global health challenge, driven by molecular mechanisms such as genetic mutations, efflux pumps, enzymatic degradation of antibiotics, target site modifications, and biofilm formation. Horizontal gene transfer (HGT) further accelerates the spread of resistance genes across bacterial populations. These mechanisms contribute to the emergence of multidrug-resistant (MDR) strains, rendering conventional antibiotics ineffective. Recent advancements in CRISPR/Cas9-based genome editing offer innovative solutions to combat drug resistance. CRISPR/Cas9 enables precise targeting of resistance genes, facilitating their deletion or inactivation, and provides a potential method to eliminate resistance-carrying plasmids. Furthermore, phage-delivered CRISPR systems show promise in selectively killing resistant bacteria while leaving susceptible strains unaffected. Despite challenges such as efficient delivery, off-target effects, and potential bacterial resistance to CRISPR itself, ongoing research and technological innovations hold promise for using CRISPR-based antimicrobials to reverse bacterial drug resistance and develop more effective therapies. These abstract highlights the molecular mechanisms underlying bacterial drug resistance and explores how CRISPR/Cas9 technology could revolutionize treatment strategies against resistant pathogens.202540051841
817160.9896Advancements in CRISPR-Cas-based strategies for combating antimicrobial resistance. Multidrug resistance (MDR) in bacteria presents a significant global health threat, driven by the widespread dissemination of antibiotic-resistant genes (ARGs). The CRISPR-Cas system, known for its precision and adaptability, holds promise as a tool to combat antimicrobial resistance (AMR). Although previous studies have explored the use of CRISPR-Cas to target bacterial genomes or plasmids harboring resistance genes, the application of CRISPR-Cas-based antimicrobial therapies is still in its early stages. Challenges such as low efficiency and difficulties in delivering CRISPR to bacterial cells remain. This review provides an overview of the CRISPR-Cas system, highlights recent advancements in CRISPR-Cas-based antimicrobials and delivery strategies for combating AMR. The review also discusses potential challenges for the future development of CRISPR-Cas-based antimicrobials. Addressing these challenges would enable CRISPR therapies to become a practical solution for treating AMR infections in the future.202540440869
908870.9896Cocrystallizing and Codelivering Complementary Drugs to Multidrugresistant Tuberculosis Bacteria in Perfecting Multidrug Therapy. Bacteria cells exhibit multidrug resistance in one of two ways: by raising the genetic expression of multidrug efflux pumps or by accumulating several drug-resistant components in many genes. Multidrug-resistive tuberculosis bacteria are treated by multidrug therapy, where a few certain antibacterial drugs are administered together to kill a bacterium jointly. A major drawback of conventional multidrug therapy is that the administration never ensures the reaching of different drug molecules to a particular bacterium cell at the same time, which promotes growing drug resistivity step-wise. As a result, it enhances the treatment time. With additional tabletability and plasticity, the formation of a cocrystal of multidrug can ensure administrating the multidrug chemically together to a target bacterium cell. With properly maintaining the basic philosophy of multidrug therapy here, the synergistic effects of drug molecules can ensure killing the bacteria, even before getting the option to raise the drug resistance against them. This can minimize the treatment span, expenditure and drug resistance. A potential threat of epidemic from tuberculosis has appeared after the Covid-19 outbreak. An unwanted loop of finding molecules with the potential to kill tuberculosis, getting their corresponding drug approvals, and abandoning the drug after facing drug resistance can be suppressed here. This perspective aims to develop the universal drug regimen by postulating the principles of drug molecule selection, cocrystallization, and subsequent harmonisation within a short period to address multidrug-resistant bacteria.202337150990
817380.9896Advancing Antibacterial Strategies: CRISPR-Phage-Mediated Gene Therapy Targeting Bacterial Resistance Genes. One of the most significant issues facing the world today is antibiotic resistance, which makes it increasingly difficult to treat bacterial infections. Regular antibiotics no longer work against many bacteria, affecting millions of people. A novel approach known as CRISPR-phage therapy may be beneficial. This technique introduces a technology called CRISPR into resistant bacteria using bacteriophages. The genes that cause bacteria to become resistant to antibiotics can be identified and cut using CRISPR. This enables antibiotics to function by inhibiting the bacteria. This approach is highly precise, unlike conventional antibiotics, so it doesn't damage our bodies' beneficial bacteria. Preliminary studies and limited clinical trials suggest that this technique can effectively target drug-resistant bacteria such as Klebsiella pneumoniae and Methicillinresistant Staphylococcus aureus (MRSA). However, challenges in phage engineering, host delivery, and the growing threat of bacterial CRISPR resistance demand urgent and strategic innovation. Our perspective underscores that without proactive resolution of these hurdles, the current hopefulness could disappear. Looking ahead, integrating next-generation Cas effectors, non-DSB editors, and resistance monitoring frameworks could transform CRISPR-phage systems from an experimental novelty into a clinical mainstay. This shift will require not only scientific ingenuity but also coordinated advances in regulatory, translational, and manufacturing efforts.202540990280
917990.9896A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.202235835393
8262100.9895Advances in CRISPR-Cas systems for human bacterial disease. Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.202439266183
9076110.9895ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
9182120.9894Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study.202540663257
8174130.9894Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different bacteria possessing antibiotic resistance genes such as mecA, ermB, ramR, tetA, mqrB and bla(KPC) that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from S. pyogenes is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to beĀ solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.202438344439
9184140.9893Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.202337770168
9186150.9893From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance-A Review. In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the "adaptive immune system" of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases.202438702575
9445160.9893Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a highly infectious disease and worldwide health problem. Based on the WHO TB report, 9 million active TB cases are emerging, leading to 2 million deaths each year. The recent emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains emphasizes the necessity to improve novel therapeutic plans. Among the various developing antibacterial approaches, phage therapy is thought to be a precise hopeful resolution. Mycobacteriophages are viruses that infect bacteria such as Mycobacterium spp., containing the M. tuberculosis complex. Phages and phage-derived proteins can act as promising antimicrobial agents. Also, phage cocktails can broaden the spectrum of lysis activity against bacteria. Recent researches have also shown the effective combination of antibiotics and phages to defeat the infective bacteria. There are limitations and concerns about phage therapy. For example, human immune response to phage therapy, transferring antibiotic resistance genes, emerging resistance to phages, and safety issues. So, in the present study, we introduced mycobacteriophages, their use as therapeutic agents, and their advantages and limitations as therapeutic applications.202236550444
9177170.9893Multitarget Approaches against Multiresistant Superbugs. Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.202032156116
9218180.9893CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.202438605260
9086190.9893Emergence and selection of isoniazid and rifampin resistance in tuberculosis granulomas. Drug resistant tuberculosis is increasing world-wide. Resistance against isoniazid (INH), rifampicin (RIF), or both (multi-drug resistant TB, MDR-TB) is of particular concern, since INH and RIF form part of the standard regimen for TB disease. While it is known that suboptimal treatment can lead to resistance, it remains unclear how host immune responses and antibiotic dynamics within granulomas (sites of infection) affect emergence and selection of drug-resistant bacteria. We take a systems pharmacology approach to explore resistance dynamics within granulomas. We integrate spatio-temporal host immunity, INH and RIF dynamics, and bacterial dynamics (including fitness costs and compensatory mutations) in a computational framework. We simulate resistance emergence in the absence of treatment, as well as resistance selection during INH and/or RIF treatment. There are four main findings. First, in the absence of treatment, the percentage of granulomas containing resistant bacteria mirrors the non-monotonic bacterial dynamics within granulomas. Second, drug-resistant bacteria are less frequently found in non-replicating states in caseum, compared to drug-sensitive bacteria. Third, due to a steeper dose response curve and faster plasma clearance of INH compared to RIF, INH-resistant bacteria have a stronger influence on treatment outcomes than RIF-resistant bacteria. Finally, under combination therapy with INH and RIF, few MDR bacteria are able to significantly affect treatment outcomes. Overall, our approach allows drug-specific prediction of drug resistance emergence and selection in the complex granuloma context. Since our predictions are based on pre-clinical data, our approach can be implemented relatively early in the treatment development process, thereby enabling pro-active rather than reactive responses to emerging drug resistance for new drugs. Furthermore, this quantitative and drug-specific approach can help identify drug-specific properties that influence resistance and use this information to design treatment regimens that minimize resistance selection and expand the useful life-span of new antibiotics.201829746491