# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5818 | 0 | 0.9888 | Temporal trends in prevalence of bacteria isolated from foals with sepsis: 1979-2010. REASONS FOR PERFORMING STUDY: Sepsis is an important cause of death in foals. Knowledge of which pathogens are likely to be involved is important for selection of antimicrobial drugs for initial treatment. OBJECTIVES: To identify temporal trends in prevalence of bacteria isolated from foals with sepsis between 1979 and 2010. STUDY DESIGN: Retrospective review of medical records. METHODS: All foals ≤30 days of age presented to the Veterinary Medical Teaching Hospital (VMTH) at the University of California, Davis between 1979 and 2010, with a diagnosis of sepsis confirmed by culture of bacteria from blood or internal organs (antemortem or at necropsy), were included in the study. Conventional microbiological methods were used to identify isolated organisms. The Cochran-Armitage trend test was used for statistical analysis. RESULTS: The percentage of Gram-positive isolates increased significantly over the years. The percentage Enterobacteriacea, and Klebsiella spp. in particular, decreased over time. Enterococcus spp. isolates were cultured more often in recent years. CONCLUSIONS: Whereas Gram-negative bacteria, particularly Enterobacteriaceae, remain the most common isolates from neonatal foals with sepsis, the prevalence of Gram-positive bacteria is increasing. This trend underlines the importance of including antimicrobial drugs active against both Gram-positive and Gram-negative bacteria in treatment protocols while awaiting the results of bacteriological culture and susceptibility tests. The increased prevalence of Enterococcus spp. is of concern because antimicrobial susceptibility patterns for enterococci are unpredictable and enterococci can also act as donors of antimicrobial resistance genes to other bacteria. | 2014 | 23808819 |
| 8204 | 1 | 0.9886 | Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection. Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond. | 2022 | 34791204 |
| 6033 | 2 | 0.9886 | Antibacterial Activity of Lactobacillus Strains Isolated from Mongolian Yogurt against Gardnerella vaginalis. Worldwide interest in the use of functional foods containing probiotic bacteria such as Lactobacillus and Bifidobacterium for health promotion and disease prevention has increased significantly. Probiotics have demonstrated beneficial properties including strengthening the body's natural defense system, inhibiting the growth of pathogenic bacteria, and regulating mental activity, but their effects on the human vagina have not been fully elucidated. The primary purpose of our study was to isolate Lactobacillus strains from old yogurt, a traditional dairy product, and investigate their probiotic potential with respect to the human vaginal system. Four Lactobacillus plantarum (L. plantarum) strains, named ZX1, ZX2, ZX27, and ZX69, were isolated from the yogurt samples. Simultaneously, we used a commercial Lactobacillus strain (Lactobacillus delbrueckii DM8909) as a control strain. We tested the antimicrobial activity of Lactobacillus isolates against Escherichia coli and Gardnerella vaginalis by agar spot and well diffusion tests. Then, we tested the antibiotic susceptibility of the 5 strains by using the minimal inhibitory concentration method. We attempted to detect possible bacteriocin genes by PCR sequencing technique. Using a chemically defined medium simulating genital tract secretions, we found that the selected Lactobacillus strains could alter the expression of known virulence genes in Gardnerella vaginalis. Bacteriocins derived from these isolated strains had potent antibacterial activity against G. vaginalis and E. coli, with the most effective activity observed in the case of ZX27. In addition, all strains including the L. delbrueckii DM8909 were positive for the presence of the plantaricin cluster of genes described in L. plantarum C11. The tested stains possessed the pln gene indicating that one of the antibacterial agents was plantaricin. We assume that the production of antimicrobial substances such as bacteriocins induce G. vaginalis to upregulate antimicrobial resistance genes. The new isolated strains have bacteriocin-related genes and can change the antimicrobial resistance gene transcription of G. vaginalis. | 2020 | 32382546 |
| 2510 | 3 | 0.9885 | Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia. | 2021 | 34943524 |
| 3752 | 4 | 0.9885 | Aeromonas allosaccharophila Strain AE59-TE2 Is Highly Antagonistic towards Multidrug-Resistant Human Pathogens, What Does Its Genome Tell Us? Multidrug-resistant bacteria are of critical importance and a problem for human health and food preservation; the discovery of new antimicrobial substances to control their proliferation is part of the solution. This work reports on 57 antagonistic Aeromonas strains, of which 38 strains were antagonistic towards problematic human pathogens. The genome of the most antagonistic strain was sequenced and identified as Aeromonas allosaccharophila. Its genome was fully annotated and mined for genes that might explain that activity. Strain AE59-TE was antagonistic toward clinically relevant gram-negative and gram-positive multidrug-resistant bacteria, including Klebsiella pneumoniae KPC, Escherichia coli ESBL, Salmonella typhimurium, and Staphylococcus aureus MRSA. Strain AE59-TE2 was identified by multilocus sequence analysis. Genome mining identified four genes homologous to the bacteriocin, zoocin A from Streptococcus equi and a gene 98% similar to cvpA linked to colicin V production. A. allosaccharophila strain AE59-TE2 produced antimicrobial activity against a broad range of bacteria, including important gram-negative bacteria, not typically targeted by bacteriocins. Herewere described novel zoocin genes that are promising for industrial applications in the food and health sectors. Interesting and important antagonistic activity is described combined with the first detailed genomic analysis of the species Aeromonas allosaccharophila. | 2022 | 36294926 |
| 5192 | 5 | 0.9884 | Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment. | 2024 | 38881048 |
| 2538 | 6 | 0.9883 | Passenger pathogens on physicians. BACKGROUND: Hospital acquired infections pose a significant risk for patients undergoing hematopoietic stem cell transplantation. Horizontal transfer of antimicrobial resistance genes contributes to prevalence of multidrug-resistant infections in this patient population. METHODS: At an academic bone marrow transplantation center, we performed whole genome DNA sequencing (WGS) on commonly used physician items, including badges, stethoscopes, soles of shoes, and smart phones from 6 physicians. Data were analyzed to determine antimicrobial resistance and virulence factor genes. RESULTS: A total of 1,126 unique bacterial species, 495 distinct bacteriophages, 91 unique DNA viruses, and 175 fungal species were observed. Every item contained bacteria with antibiotic and/or antiseptic resistance genes. Stethoscopes contained greatest frequency of antibiotic resistance and more plasmid-carriage of antibiotic resistance. DISCUSSION AND CONCLUSIONS: These data indicate that physician examination tools and personal items possess potentially pathogenic microbes. Infection prevention policies must consider availability of resources to clean physical examination tools as well as provider awareness when enacting hospital policies. Additionally, the prevalence of antimicrobial resistance genes (eg, encoding resistance to aminoglycosides, β-lactams, and quinolones) reinforces need for antimicrobial stewardship, including for immunocompromised patients. Further research is needed to assess whether minute quantities of microbes on physician objects detectable by WGS represents clinically significant inoculums for immunocompromised patients. | 2023 | 36306861 |
| 9761 | 7 | 0.9883 | Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. BACKGROUND: The gram-negative bacteria Porphyromonas gingivalis (PG) is the most prevalent cause of periodontal diseases and multidrug-resistant (MDR) infections. Periodontitis and MDR infections are severe due to PG's ability to efflux antimicrobial and virulence factors. This gives rise to colonisation, biofilm development, evasion, and modulation of the host defence system. Despite extensive studies on the MDR efflux pump in other pathogens, little is known about the efflux pump and its association with the virulence factor in PG. Prolonged infection of PG leads to complete loss of teeth and other systemic diseases. This necessitates the development of new therapeutic interventions to prevent and control MDR. OBJECTIVE: The study aims to identify the most indispensable proteins that regulate both resistance and virulence in PG, which could therefore be used as a target to fight against the MDR threat to antibiotics. METHODS: We have adopted a hierarchical network-based approach to construct a protein interaction network. Firstly, individual networks of four major efflux pump proteins and two virulence regulatory proteins were constructed, followed by integrating them into one. The relationship between proteins was investigated using a combination of centrality scores, k-core network decomposition, and functional annotation, to computationally identify the indispensable proteins. RESULTS: Our study identified four topologically significant genes, PG_0538, PG_0539, PG_0285, and PG_1797, as potential pharmacological targets. PG_0539 and PG_1797 were identified to have significant associations between the efflux pump and virulence genes. This type of underpinning research may help in narrowing the drug spectrum used for treating periodontal diseases, and may also be exploited to look into antibiotic resistance and pathogenicity in bacteria other than PG. | 2022 | 35835406 |
| 5160 | 8 | 0.9883 | Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs. OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero. | 2021 | 33589511 |
| 4620 | 9 | 0.9882 | Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. In recent years, metagenome-wide association studies have revealed potential relationships between intestinal microbiomes and the pathogenesis of type 2 diabetes mellitus (T2DM). However, considering the increase in volume of gene catalogues and algorithms, an updated analysis would be expected to confirm previous discoveries and provide new knowledge. We therefore constructed new profiles after mapping the recent catalogue of reference genes in the human gut microbiome to reanalyze samples from T2DM cases and controls in the Chinese population. We identified different compositions between Chinese controls and T2DM patients at the species and genus levels, especially in the case of butyrate-producing bacteria, Haemophilus, and Lactobacillus. An effective metagenomic linkage group random forest model was built to differentiate controls from T2DM cases in different cohorts. Functional markers from the Kyoto Encyclopedia of Genes and Genomes database were identified using new annotations. We also report 16 virulence factor markers and 22 antibiotic resistance markers associated with T2DM. | 2017 | 27943013 |
| 5809 | 10 | 0.9881 | Genomic epidemiology of Streptococcus agalactiae ST283 in Southeast Asia. Streptococcus agalactiae, also known as Lancefield Group B Streptococcus (GBS), is typically regarded as a neonatal pathogen; however, several studies have shown that the bacteria are capable of causing invasive diseases in non-pregnant adults as well. The majority of documented cases were from Southeast Asian countries, and the most common genotype found was ST283, which is also known to be able to infect fish. This study sequenced 12 GBS ST283 samples collected from adult patients in Thailand. Together with publicly available sequences, we performed temporo-spatial analysis and estimated population dynamics of the bacteria. Putative drug resistance genes were also identified and characterized, and the drug resistance phenotypes were validated experimentally. The results, together with historical records, draw a detailed picture of the past transmission history of GBS ST283 in Southeast Asia. | 2022 | 35264716 |
| 4783 | 11 | 0.9881 | Helicobacter pylori may survive ampicillin treatment in the remnant stomach. Helicobacter pylori (H. pylori) is a Gram-negative curved rod-like or spiral bacterium that chronically infects the human gastric mucosa, and is a major risk factor for gastritis, gastric and duodenal ulcer and adenocarcinoma of the stomach. After partial gastrectomy, some patients may have persistent H. pylori infection for five years or more. In this study, we detected three bacteria, i.e., Klebsiella pneumoniae, Enterobacter aerogenes, and Escherichia coli, in the gastric juice of patients with a remnant stomach. Some of these bacteria produced beta-lactamase. These findings are potentially important since such bacteria could provide H. pylori with the chance to acquire drug resistance and to transfer drug resistance genes. This could be one reason why H. pylori is difficult to eradicate in the remnant stomach. | 2002 | 12139018 |
| 4896 | 12 | 0.9881 | The changing ecology of bacterial infections in children. There is continued change in the organisms involved in commonly encountered infections. Although the major organisms have changed less in pediatric than in medical or surgical infections, the advances in neonatology and the chemotherapy of leukemia have resulted in cases in which infection with once uncommon organisms is now commonplace. Perhaps more disheartening has been the increasing resistance of bacteria to antibiotics. Since resistance patterns are so much a reflection of antibiotic usage patterns in an institution, each pediatrician must be aware of the species of bacteria and the resistance patterns of the bacteria isolated in his hospital, particularly in neonatal, intensive care, and burn areas where there is the highest use of antibiotics. Close interaction of pediatrician, diagnostic microbiology laboratory, and hospital epidemiologist can provide early clues to possible bacteria involved in infection, as well as suspected antibiotic resistance patterns. | 1976 | 1253540 |
| 5068 | 13 | 0.9881 | Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria. | 2020 | 33086716 |
| 5116 | 14 | 0.9880 | Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. BACKGROUND: Early detection of antimicrobial resistance in pathogens and prescription of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput sequencing technology, such as whole genome sequencing (WGS), may have the capacity to rapidly guide the clinical decision-making process. The prediction of antimicrobial resistance in Gram-negative bacteria, often the cause of serious systemic infections, is more challenging as genotype-to-phenotype (drug resistance) relationship is more complex than for most Gram-positive organisms. METHODS AND FINDINGS: We have used NCBI BioSample database to train and cross-validate eight XGBoost-based machine learning models to predict drug resistance to cefepime, cefotaxime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem, and tobramycin tested in Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. The input is the WGS data in terms of the coverage of known antibiotic resistance genes by shotgun sequencing reads. Models demonstrate high performance and robustness to class imbalanced datasets. CONCLUSION: Whole genome sequencing enables the prediction of antimicrobial resistance in Gram-negative bacteria. We present a tool that provides an in silico antibiogram for eight drugs. Predictions are accompanied with a reliability index that may further facilitate the decision making process. The demo version of the tool with pre-processed samples is available at https://vancampn.shinyapps.io/wgs2amr/. The stand-alone version of the predictor is available at https://github.com/pieterjanvc/wgs2amr/. | 2020 | 32528441 |
| 5842 | 15 | 0.9880 | Draft Genome Sequence and Biofilm Production of a Carbapenemase-Producing Klebsiella pneumoniae (KpR405) Sequence Type 405 Strain Isolated in Italy. Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is essential to diagnose severe infections in patients. In clinical routine practice, K. pneumoniae is frequently identified and characterized for outbreak investigation. Pulsed-field gel electrophoresis or multilocus sequence typing could be used, but, unfortunately, these methods are time-consuming, laborious, expensive, and do not provide any information about the presence of resistance and virulence genes. In recent years, the decreasing cost of next-generation sequencing and its easy use have led to it being considered a useful method, not only for outbreak surveillance but also for rapid identification and evaluation, in a single step, of virulence factors and resistance genes. Carbapenem-resistant strains of K. pneumoniae have become endemic in Italy, and in these strains the ability to form biofilms, communities of bacteria fixed in an extracellular matrix, can defend the pathogen from the host immune response as well as from antibiotics, improving its persistence in epithelial tissues and on medical device surfaces. | 2021 | 34064924 |
| 4784 | 16 | 0.9880 | cfxA expression in oral clinical Capnocytophaga isolates. Capnocytophaga spp. are commensal bacteria involved in oral and systemic diseases, with a variable susceptibility to beta-lactams. The cfxA gene expression level was assessed using quantitative RT-PCR, and reasons of the observed misexpression were discussed, as insertion of foreign genetic material, contributing to dissemination and evolution of antibiotic resistance genes. | 2015 | 26204794 |
| 3760 | 17 | 0.9880 | Emergence of recurrent urinary tract infection: Dissecting the mechanism of antimicrobial resistance, host-pathogen interaction, and hormonal imbalance. Urinary tract infection is one of the most common infections worldwide, causing numerous deaths every year. The gut-bladder axis has been recently found to be a key factor in initiating UTI pathogenesis, along with the imbalance in the gut microbiome, which is associated with advanced susceptibility to rUTI. The patients who suffer from UTIs are, more often than not, the ones who have the lowest levels of butyrate-producing gut bacteria. Antibiotics cause dysbiosis in the gut and increase the growth of uropathogenic strains. Moreover, the gut-vagina and vagina-bladder axes are involved in UTIs by transferring microbial species, modulating the immune response, and developing intracellular bacterial reservoirs in the bladder. The rising usage of antibiotics has raised antimicrobial resistance (AMR) worldwide and recently worsened the treatment of UTIs. Resistance mechanisms include enzymatic hydrolysis of antibiotics, efflux systems, biofilm formation, horizontal gene transfer, and a weakened host's immune system, allowing bacteria to escape from the treatments. Besides, in pregnant women and adolescents, the alterations in sex hormone levels increase the risk of rUTIs. Knowledge of microbiota that inhabit the gut-vagina and vagina-bladder axes might lead to the invention of nonantibiotic preventive and therapeutic techniques in the future. In conclusion, this review emphasizes the need for a study to understand the host-microbe interactions, gut health, and AMR to effectively deal with and prevent recurrent UTIs. Also, the review explores a comprehensive analysis of the epigenetic network between host UTIs and marker genes in E. coli. The analysis showed seven genes associated with UTIs, namely, CXCL8, CDKN2A, RB1, EGFR, TP53, KRAS, and HRAS, are also implicated in bladder cancer. | 2025 | 40373943 |
| 4900 | 18 | 0.9880 | Study on the antibacterial effect of CuO nanoparticles on Klebsiella pneumonia bacteria: Efficient treatment for colorectal cancer. Colorectal cancer (CRC) is a widespread type of cancer across the world. One efficient therapy approach is the use of antibiotic agents, but one of the main issues related to treating CRC is microbial resistance to antibiotics. As microbes are becoming more resistant to antibiotics and other traditional antimicrobial agents, nanobiotechnology has made it possible to employ nanomaterials with the aim of creating a new generation of antimicrobial agents. In the present study, we have assessed the antimicrobial potential of CuO nanoparticles (NPs) against gram-negative bacteria like Klebsiella pneumoniae carrying PKS genes responsible for encoding colibactin as the key factor for CRC development. For this purpose, the antibacterial effects of conventional antibacterial agents, including erythromycin, piperacillin, and ampicillin, as well as CuONPs, were compared on isolated strains from cancerous candidates. The obtained results revealed that isolates (K. pneumoniae) showed resistance toward the mentioned conventional antibiotics, but CuONPs showed efficient antibacterial properties against K. pneumonia with a MIC = 62 μg/mL. On the other hand, a synergistic antibacterial effect was obtained when CuONPs were used in combination with conventional antibiotics, which are ineffective when used alone. Therefore, CuONPs can be introduced as an excellent antimicrobial agent against K. pneumoniae bacteria in CRC, especially when they are combined with other antibiotics since they can activate the antimicrobial activity of the conventional antibiotics. | 2023 | 37264727 |
| 6122 | 19 | 0.9880 | Metatranscriptome and Resistome of the Endodontic Microbiome. INTRODUCTION: In this study, we used metatranscriptomics for the first time to investigate microbial composition, functional signatures, and antimicrobial resistance gene expression in endodontic infections. METHODS: Root canal samples were collected from ten teeth, including five primary and five persistent/secondary endodontic infections. RNA from endodontic samples was extracted, and RNA sequencing was performed on a NovaSeq6000 system (Illumina). Taxonomic analysis was performed using the Kraken2 bacterial database. Then, sequences with a taxonomic classification were annotated against the Universal Protein Knowledgebase for functional annotation and the Comprehensive Antibiotic Resistance Database for AR-like gene identification. RESULTS: Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria represented the dominant phyla, whereas Fusobacteria, Spirochetes, and Synergistetes were among the nondominant phyla. The top ten species were mainly represented by obligate (or quasiobligate) anaerobes, including Gram-negative (eg, Capnocytophaga sp. oral taxon 323, Fusobacterium nucleatum, Prevotella intermedia, Prevotella oris, Tannerella forsythia, and Tannerella sp. oral taxon HOT-286) and Gram-positive species (eg, Olsenella uli and Parvimonas micra). Transcripts encoding moonlighting proteins (eg, glycolytic proteins, translational elongation factors, chaperonin, and heat shock proteins) were highly expressed, potentially affecting bacterial adhesion, biofilm formation, host defense evasion, and inflammation induction. Endodontic bacteria expressed genes conferring resistance to antibiotic classes commonly used in dentistry, with a high prevalence and expression of tetracycline and lincosamide resistance genes. Antibiotic efflux and antibiotic target alteration/protection were the main resistance mechanisms. CONCLUSIONS: Metatranscriptomics revealed the activity of potential endodontic pathogens, which expressed putative virulence factors and a wide diversity of genes potentially involved in AR. | 2024 | 38719087 |