# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3541 | 0 | 0.9855 | Antibiotic-resistance genes and metals increase in polluted tropical rivers of the Baia da Ilha Grande, Rio de Janeiro, Brazil. Baia da Ilha Grande (BIG), Rio de Janeiro, Brazil, is one of the largest bays in the world. BIG is important because it serves as a route for the mining and oil industries and plays a vital role in mariculture activities. However, BIG has suffered significant impacts in recent years due to increased pollution and climate change, culminating in a local mariculture collapse. We examined the pollution levels of the bay. Biogeochemical, microbiological, and metagenomics analyses were conducted in ten rivers during the 2022 dry and rainy seasons. Combined data analyses showed that the bay's ten most significant rivers are polluted and classified into three decreasing levels of pollution groups (P1-P3). The P1 group (Centro, Japuíba, Jacuecanga) had the worst-case scenario for all pollution types, and the highest number of the nearby populations, nautical workshops and hospitals. Whereas the P2 (Jacarei, Perequeaçu and Taquari) and P3 (Frade, Bracuí, Mambucaba, São Roque) had relatively reduced pollution, as shown mainly by fecal bacteria. Metals, such as Al (>0.3 mg/L), Fe (>1.4 mg/L), Pb (>0.15 mg/L), and resistance genes (∼2 % metagenomic profile) were also more abundant in P1. High levels of metals and antibiotic resistance genes were a strong indication of pollution. The results from this study shed light on the health status of BIG rivers for further conservation programs and public policies to prevent rivers and marine biodiversity losses, and they serves as a warning on the urgent need to treat effluents in the region. | 2025 | 39986042 |
| 737 | 1 | 0.9854 | Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance. | 2016 | 26652129 |
| 9572 | 2 | 0.9850 | Diagnostic Evasion of Highly-Resistant Microorganisms: A Critical Factor in Nosocomial Outbreaks. Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests. | 2017 | 29163416 |
| 738 | 3 | 0.9850 | Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Environmental bacteria are exposed to a myriad of biotic interactions that influence their function and survival. The grazing activity of protozoan predators significantly impacts the dynamics, diversification, and evolution of bacterial communities in soil ecosystems. To evade protozoan predation, bacteria employ various defense strategies. Soil-dwelling Pseudomonas fluorescens strains SS101 and SBW25 produce the cyclic lipopeptide surfactants (CLPs) massetolide and viscosin, respectively, in a quorum-sensing-independent manner. In this study, CLP production was shown to protect these bacteria from protozoan predation as, compared to CLP-deficient mutants, strains SS101 and SBW25 exhibited resistance to grazing by Naegleria americana in vitro and superior persistence in soil in the presence of this bacterial predator. In the wheat rhizosphere, CLP-producing strains had a direct deleterious impact on the survival of N. americana. In vitro assays further showed that N. americana was three times more sensitive to viscosin than to massetolide and that exposure of strain SS101 or SBW25 to this protozoan resulted in upregulation of CLP biosynthesis genes. Enhanced expression of the massABC and viscABC genes did not require physical contact between the two organisms as gene expression levels were up to threefold higher in bacterial cells harvested 1 cm from feeding protozoans than in cells collected 4 cm from feeding protozoans. These findings document a new natural function of CLPs and highlight that bacterium-protozoan interactions can result in activation of an antipredator response in prey populations. | 2009 | 19717630 |
| 9023 | 4 | 0.9849 | Repositioning secnidazole as a novel virulence factors attenuating agent in Pseudomonas aeruginosa. Long-term treatment with antibiotics gives rise to the evolution of multi-drug resistant bacteria which are hard to be treated. Virulence factors inhibitors depend on disarming of microbial pathogens through reducing expression of virulence factors, abolishing the pathogen capability to harm the host. In the present study, the influence of secnidazole on Pseudomonas aeruginosa virulence factors expression was characterized. Production of Pseudomonas aeruginosa virulence factors such as pyocyanin, pyoverdin, elastase, rhamnolipids, proteases and hemolysins was examined following treatment of bacteria with sub-inhibitory concentration of secnidazole. Interestingly, secnidazole showed a powerful inhibitory effect on Pseudomonas aeruginosa virulence factors. Our results were further confirmed using qRT-PCR showing that there was a significant decrease in the expression of quorum sensing genes; lasI, lasR, rhlI, rhlR, pqsA and pqsR that regulate expression of virulence factors in Pseudomonas aeruginosa. Moreover, in vivo experiment using mice as infection model showed that secnidazole-treated bacteria were less capable to kill mice as compared to untreated bacteria. Importantly, there was a significant reduction in mortality in mice injected with secnidazole-treated bacteria relative to mice inoculated with untreated bacteria. In summary, our data showed that secnidazole could play a role in attenuating Pseudomonas aeruginosa through reducing virulence factors production. Moreover, our data clearly suggest that secnidazole could be involved in the treatment of Pseudomonas aeruginosa infections in order to control infection and lower the development of bacterial resistance to antibiotics. | 2019 | 30500409 |
| 4896 | 5 | 0.9847 | The changing ecology of bacterial infections in children. There is continued change in the organisms involved in commonly encountered infections. Although the major organisms have changed less in pediatric than in medical or surgical infections, the advances in neonatology and the chemotherapy of leukemia have resulted in cases in which infection with once uncommon organisms is now commonplace. Perhaps more disheartening has been the increasing resistance of bacteria to antibiotics. Since resistance patterns are so much a reflection of antibiotic usage patterns in an institution, each pediatrician must be aware of the species of bacteria and the resistance patterns of the bacteria isolated in his hospital, particularly in neonatal, intensive care, and burn areas where there is the highest use of antibiotics. Close interaction of pediatrician, diagnostic microbiology laboratory, and hospital epidemiologist can provide early clues to possible bacteria involved in infection, as well as suspected antibiotic resistance patterns. | 1976 | 1253540 |
| 9366 | 6 | 0.9846 | Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild-type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild-type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to "keep-up" with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild-type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild-type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short-lived. More generally, the results demonstrate that coevolving enemies may escape from Red-Queen dynamics. | 2010 | 20497216 |
| 8986 | 7 | 0.9846 | Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives. | 2022 | 34613655 |
| 9007 | 8 | 0.9846 | Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. AIMS: To evaluate the killing of Pseudomonas aeruginosa PAO1 on copper cast alloys and the influence of genes on survival on copper containing medium and surfaces. METHODS AND RESULTS: Different strains of P. aeruginosa were inoculated on copper containing medium or different copper cast alloys and the survival rate determined. The survival rates were compared with rates on copper-free medium and stainless steel as control. In addition, the effect of temperature on survival was examined. CONCLUSIONS: Copper cast alloys had been previously shown to be bactericidal to various bacteria, but the mechanism of copper-mediated killing is still not known. In this report, we demonstrate that P. aeruginosa PAO1 is rapidly killed on different copper cast alloys and that genes involved in conferring copper resistance in copper-containing medium also influenced survival on copper cast alloys. We also show that the rate of killing is influenced by temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: To use copper surfaces more widely as bactericidal agents in various settings, it is important to understand how genes influence survival on these surfaces. Here we show that genes shown to be involved in copper resistance in P. aeruginosa PAO1 can have an impact on the length of survival time on copper cast alloys under certain conditions. This is an important first step for evaluation of future use of copper surfaces as bactericidal agents. | 2009 | 19239551 |
| 9111 | 9 | 0.9846 | Quorum sensing system: Target to control the spread of bacterial infections. Quorum Sensing (QS) systems regulate the gene expression of different types of virulence factors in accordance with the cell population density. A literature search was performed, including electronic databases such as MEDLINE/PubMed, SciELO, and LILACS, as well as other databases not indexed, such as Google Scholar. The search was conducted between July 2018 and April 2019, through online research. Antimicrobial resistance is one of the biggest threats to global health and the dissemination of resistant microbes in the environment is a major public health problem. Therefore, it is important to develop new therapies to control the spread of resistant bacteria to humans. Thus, interference in the chemical signal (autoinducers) of the QS system has been postulated as a good alternative, technically known as "Quorum Quenching" or QS inhibitors. Inhibition of QS signaling is not intended to kill the microorganism, but to block the expression of the target genes, making the cells less virulent and more vulnerable to host immune response. Anti-virulence therapy by agents that interfere with this system in pathogenic bacteria is a well-studied strategy, including medicinal plants and their bioactive constituents, and presents good prospects. This review aims to provide an overview of the QS system in bacteria and describe the main inhibitors of the system. | 2020 | 32061914 |
| 9580 | 10 | 0.9846 | Antibiotic resistance in bacterial communities. Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem. | 2023 | 37054512 |
| 770 | 11 | 0.9845 | Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests. | 2024 | 38519499 |
| 9461 | 12 | 0.9845 | Effects of Sexual Network Connectivity and Antimicrobial Drug Use on Antimicrobial Resistance in Neisseria gonorrhoeae. Contemporary strategies to curtail the emergence of antimicrobial resistance in Neisseria gonorrhoeae include screening for and treating asymptomatic infections in high-prevalence populations in whom antimicrobial drug-resistant infections have typically emerged. We argue that antimicrobial resistance in these groups is driven by a combination of dense sexual network connectivity and antimicrobial drug exposure (for example, through screen-and-treat strategies for asymptomatic N. gonorrhoeae infection). Sexual network connectivity sustains a high-equilibrium prevalence of N. gonorrhoeae and increases likelihood of reinfection, whereas antimicrobial drug exposure results in selection pressure for reinfecting N. gonorrhoeae strains to acquire antimicrobial resistance genes from commensal pharyngeal or rectal flora. We propose study designs to test this hypothesis. | 2018 | 29912682 |
| 6667 | 13 | 0.9845 | Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective. The appearance of resistance to many first-line antimicrobial agents presents a critical challenge to the successful treatment of bacterial infections. Antimicrobial resistant bacteria and resistance genes are globally distributed, but significant variations in prevalence have been observed in different geographical regions. This article discusses possible relationships between socioeconomic and sociocultural factors and regional differences in the prevalence of antibiotic-resistant bacteria and their associated resistance genes. Findings indicate that the few studies that have been conducted to understand relationships between socioeconomic and sociocultural factors and antimicrobial resistance have focused on patterns of phenotypic antibiotic resistance. Yet, a critical need exists for molecular studies of human influences on bacterial resistance and adaptation. We propose that the results of these studies, coupled with well-coordinated culturally appropriate interventions that address specific socioeconomic and sociocultural needs may be necessary to reduce the scourge of antimicrobial resistance in both developing and developed countries. | 2008 | 20204098 |
| 5182 | 14 | 0.9845 | Evaluating virulence features of Acinetobacter baumannii resistant to polymyxin B. The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets. | 2024 | 38942450 |
| 7130 | 15 | 0.9844 | Microbial community structure and resistome dynamics on elevator buttons in response to surface disinfection practices. BACKGROUND: Disinfectants have been extensively used in public environments since the COVID-19 outbreak to help control the spread of the virus. This study aims to investigate whether disinfectant use influences the structure of bacterial communities and contributes to bacterial resistance to disinfectants and antibiotics. METHODS: Using molecular biology techniques-including metagenomic sequencing and quantitative PCR (qPCR)-we analyzed the bacterial communities on elevator button surfaces from two tertiary hospitals, one infectious disease hospital, two quarantine hotels (designated for COVID-19 control), and five general hotels in Nanjing, Jiangsu Province, during the COVID-19 pandemic. We focused on detecting disinfectant resistance genes (DRGs), antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs). RESULTS: Significant differences were observed in the bacterial community structures on elevator button surfaces across the four types of environments. Quarantine hotels, which implemented the most frequent disinfection protocols, exhibited distinct bacterial profiles at the phylum, genus, and species levels. Both α-diversity (within-sample diversity) and β-diversity (between-sample diversity) were lower and more distinct in quarantine hotels compared to the other environments. The abundance of DRGs, ARGs, and MGEs was also significantly higher on elevator button surfaces in quarantine hotels. Notably, antibiotic-resistant bacteria (ARBs), including Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, were detected in all four settings. CONCLUSION: The structure of bacterial communities on elevator button surfaces varies across different environments, likely influenced by the frequency of disinfectant use. Increased resistance gene abundance in quarantine hotels suggests that disinfection practices may contribute to the selection and spread of resistant bacteria. Enhanced monitoring of disinfection effectiveness and refinement of protocols in high-risk environments such as hospitals and hotels are essential to limit the spread of resistant pathogens. | 2025 | 40520307 |
| 6606 | 16 | 0.9844 | Comprehensive analysis of antimicrobial resistance in the Southwest Indian Ocean: focus on WHO critical and high priority pathogens. The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network. | 2024 | 38628847 |
| 9785 | 17 | 0.9844 | Mis-annotations of a promising antibiotic target in high-priority gram-negative pathogens. The rise of antibiotic resistance combined with the lack of new products entering the market has led to bacterial infections becoming one of the biggest threats to global health. Therefore, there is an urgent need to identify novel antibiotic targets, such as dihydrodipicolinate synthase (DHDPS), an enzyme involved in the production of essential metabolites in cell wall and protein synthesis. Here, we utilised a 7-residue sequence motif to identify mis-annotation of multiple DHDPS genes in the high-priority Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. We subsequently confirmed these mis-annotations using a combination of enzyme kinetics and X-ray crystallography. Thus, this study highlights the need to ensure genes encoding promising drug targets, like DHDPS, are annotated correctly, especially for clinically important pathogens. PDB ID: 6UE0. | 2020 | 31943170 |
| 9811 | 18 | 0.9844 | "Infectious Supercarelessness" in Discussing Antibiotic-Resistant Bacteria. Many bacterial pathogens are exhibiting resistance to increasing numbers of antibiotics making it much more challenging to treat the infections caused by these microbes. In many reports in the media and perhaps even in discussions among physicians and biomedical scientists, these bacteria are frequently referred to as "bugs" with the prefix "super" appended. This terminology has a high potential to elicit unjustified inferences and fails to highlight the broader evolutionary context. Understanding the full range of biological and evolutionary factors that influence the spread and outcomes of infections is critical to formulating effective individual therapies and public health interventions. Therefore, more accurate terminology should be used to refer these multidrug-resistant bacteria. | 2016 | 28174759 |
| 6672 | 19 | 0.9844 | Antibiotic resistance in bacteria - an emerging public health problem. The discovery and eventual introduction of anti-microbial agents to clinical medicine was one of the greatest medical triumphs of the twentieth century that revolutionized the treatment of bacterial diseases. However, the gradual emergence of populations of antibiotic-resistant bacteria resulting from use, misuse and outright abuse of antibiotics has today become a major public health problem of global proportions. This review paper examines the origins and molecular epidemiology of resistance genes, global picture of antibacterial resistance, factors that favour its spread, strategies for its control, problems of control and the consequences of failure to contain antibiotic resistance in bacteria. | 2003 | 27528961 |