# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5245 | 0 | 0.9923 | Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production. | 2021 | 33302298 |
| 1346 | 1 | 0.9920 | High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health. | 2021 | 33294974 |
| 1216 | 2 | 0.9920 | Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment. | 2024 | 38992444 |
| 5266 | 3 | 0.9919 | Distribution analysis of tetracycline resistance genes in Escherichia coli isolated from floor surface and effluent of pig slaughterhouses in Banten Province, Indonesia. BACKGROUND AND AIM: Slaughterhouses and their effluents could serve as a "hotspot" for the occurrence and distribution of antibiotic-resistant bacteria in the environment. This study aimed to understand the distribution of tetracycline resistance genes in Escherichia coli isolated from the floor surface and effluent samples of pig slaughterhouses in Banten Province, Indonesia. MATERIALS AND METHODS: Ten samples, each from floor surface swabs and effluents, were collected from 10 pig slaughterhouses in Banten Province. Escherichia coli strains were isolated and identified by referring to the protocol of the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli from the WHO (2021). Quantitative real-time polymerase chain reaction (qPCR) was used to detect the tet genes. RESULTS: The tetA, tetB, tetC, tetM, tetO, and tetX genes were distributed in the isolates from the floor surface samples, and the tetA, tetC, tetE, tetM, tetO, and tetX genes were distributed in the isolates from the effluent samples. The tetO gene (60%) was the most dominant gene in the isolates from floor surface samples, while the tetA gene was the dominant one in the isolates from the effluent samples (50%). The tetA + tetO gene combination was the dominant pattern (15%) in the E. coli isolates. CONCLUSION: The high prevalence and diversity of the tet genes in floor surface and effluent samples from pig slaughterhouses in Banten Province indicated that the transmission of the tet genes had occurred from pigs to the environment; thus, this situation should be considered a serious threat to public health. | 2023 | 37041843 |
| 2646 | 4 | 0.9918 | Detection of Antimicrobial Resistance Genes in Escherichia coli Isolated from Black Howler Monkeys (Alouatta pigra) and Domestic Animals in Fragmented Rain-Forest Areas in Tabasco, Mexico. The appearance and spread of antimicrobial resistance (AMR) in bacteria in natural environments and wildlife are related to agricultural and livestock activities and are a global health and conservation problem. We assessed the presence of AMR genes in Escherichia coli isolated from black howler monkeys (Alouatta pigra), sheep (Ovis aries), cattle (Bos taurus), and horses (Equus caballus) from a highly fragmented forest in southern Mexico. Fresh fecal samples were collected using swabs, seeded on eosin-methylene blue agar, and E. coli colonies identified by PCR; multiplex-PCR was performed on E. coli DNA for the detection of 10 AMR genes from four families (sulfonamides, tetracycline, β-lactamase, and chloramphenicol). We detected E. coli in 94% (48/51) of fecal samples, of which 33% (16/48) tested positive for at least one AMR gene. We detected AMR genes in at least one individual from each sampled animal species, with the most prevalent genes being tet(B) 18% (9/48), sul2 14% (7/48), sul1, and blaTEM 12% (6/48). Sheep samples contained AMR genes from the four families of antibiotics detected in this study and 50% (5/10) tested positive for the presence of at least one gene. A total of 12% (2/16) of fecal samples from black howler monkeys tested positive for AMR genes. The presence of AMR genes in A. pigra and domestic animals has not been reported in the Balancán area of Tabasco, Mexico. Transmission of AMR bacteria from domestic animals to monkeys is rare; however, this is a potential health risk for wildlife and species conservation. | 2020 | 32402234 |
| 5265 | 5 | 0.9918 | Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges. In this study, the abundance and spatial dynamics of antibiotic-resistant fecal bacteria (Escherichia coli, total coliforms and Enterococcus spp.) were determined in water and sediment samples from a river impacted by both antibiotic production plant (APP) and urban wastewater treatment plant (WWTP) discharges. Agar dilution and disk diffusion methods were also used for antimicrobial susceptibility testing. Two antimicrobial agents, cephalexin (25 μg/ml) and amoxicillin (50 μg/ml), were evaluated using the agar dilution method for E. coli, total coliforms (TC) and Enterococcus spp., whereas the degree of sensitivity or resistance of E. coli isolates to penicillin (10 U), ampicillin (10 μg), doxycycline (30 μg), tetracycline (30 μg), erythromycin (15 μg), azithromycin (15 μg) and streptomycin (10 μg) was performed using the disk diffusion method. Real-time PCR assays were used to determine the prevalence of three antibiotic-resistance genes (ARGs). The agar dilution method showed that most E. coli isolates and TC were resistant to amoxicillin, especially after receiving the APP discharges. Antibiotic resistances to amoxicillin and cephalexin were higher after the APP discharge point than after the WWTP effluent. The disk diffusion method revealed that 100% of bacterial isolates were resistant to penicillin and erythromycin. Multidrug-resistant bacteria were detected and showed a higher proportion at the WWTP discharge point than those in the APP. Highly multidrug-resistant bacteria (resistance to more than 4 antibiotics) were also detected, reaching mean values of 41.6% in water samples and 50.1% in sediments. The relative abundance of the blaTEM, blaCTX-M and blaSHV genes was higher in samples from the treatment plants than in those collected upstream from the discharges, especially for water samples collected at the APP discharge point. These results clearly demonstrate that both the APP and the WWTP contribute to the emergence and spread of antibiotic resistance in the environment. | 2014 | 24836130 |
| 5257 | 6 | 0.9918 | Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log(10) gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log(10) GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively. | 2019 | 30758793 |
| 5263 | 7 | 0.9918 | Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. OBJECTIVES: To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. METHODS: Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. RESULTS: In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. CONCLUSIONS: Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river. | 2018 | 29914198 |
| 2606 | 8 | 0.9918 | Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: a potential public health risk. Globally, coastal waters have emerged into a pool of antibiotic resistance genes and multiple antibiotic resistant microorganisms, and pathogenicity of these resistant microorganisms in terms of serotypes and virulence genes has made the environment vulnerable. The current study underscores the presence of multiple antibiotic resistant pathogenic serotypes and pathotypes of Escherichia coli, the predominant faecal indicator bacteria (FIB), in surface water and sediment samples of famous recreational beaches (Juhu, Versova, Mahim, Dadar, and Girgaon) of Mumbai. Out of 65 faecal coliforms (FC) randomly selected, 38 isolates were biochemically characterized, serotyped (for 'O' antigen), antibiogram-phenotyped (for 22 antimicrobial agents), and genotyped by polymerase chain reaction (for virulence factors). These isolates belonged to 16 different serotypes (UT, O141, O2, O119, O120, O9, O35, O126, O91, O128, O87, O86, R, O101, O118, and O15) out of which UT (18.4%), O141 (15.7%), and O2 (13.1%) were predominant, indicating its remarkable diversity. Furthermore, the generated antibiogram profile revealed that 95% of these isolates were multiple antibiotic resistant. More than 60% of aminoglycoside-sensitive E. coli isolates exhibited resistance to penicillin, extended penicillin, quinolone, and cephalosporin classes of antibiotic while resistance to other antibiotics was comparatively less. Antibiotic resistance (AR) indexing indicated that these isolates may have rooted from a high-risk source of contamination. Preliminary findings revealed the presence of enterotoxin-encoding genes (stx1 and stx2 specific for enterohaemorrhagic E. coli and Shiga toxin-producing E. coli, heat-stable toxin enterotoxin specific for enterotoxigenic E. coli) in pathogenic serotypes. Thus, government authorities and environmental planners should create public awareness and adopt effective measures for coastal management to prevent serious health risks associated with these contaminated coastal waters. | 2017 | 28316051 |
| 2782 | 9 | 0.9917 | Urban dust fecal pollution in Mexico City: antibiotic resistance and virulence factors of Escherichia coli. Fecal pollution of settled dust samples from indoor and outdoor urban environments, was measured and characterized by the presence of fecal coliforms (FC), and by the characterization of Escherichia coli virulence genes, adherence and antibiotic resistance traits as markers. There were more FC indoors than outdoors (mean values 1089 and 435MPN/g). Among indoor samples, there were more FC in houses with carpets and/or pets. Using a PCR-based assay for six enteropathogenicity genes (belonging to the EAEC, EHEC and EPEC pathotypes) on randomly selected E. coli isolates, there was no significant difference between isolates from indoors and outdoors (60% and 72% positive to at least one gene). The serotypes commonly associated with pathogenic strains, such as O86 and O28, were found in the indoor isolates; whereas O4, O66 and O9 were found amongst outdoor isolates. However, there were significantly more outdoor isolates resistant to at least one antibiotic (73% vs. 45% from indoors) among the strains positive for virulence factors, and outdoor isolates were more commonly multiresistant. There was no relationship between the presence of virulence genes and resistance traits. These results indicate that outdoor fecal bacteria were more likely from human sources, and those found indoors were related to pets and maintained in carpets. This study illustrates the risk posed by fecal bacteria from human sources, usually bearing virulence and resistance traits. Furthermore, the high prevalence of strains carrying genes associated to EAEC or EHEC pathotypes, in both indoor and outdoor environments, adds to the health risk. | 2006 | 16762593 |
| 5258 | 10 | 0.9916 | Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. This study focused on the occurrence of seventeen veterinary antibiotics and six resistant bacterias in soils from the vegetable farms fertilized with animal manure in China. Seventeen veterinary antibiotics, including sulfonamides, quinolones, tetracyclines, macrolides and amphenicols, were detected by high performance liquid chromatography/tandem mass spectrometer in all the 53 soil samples collected in four provinces during August 2016. The concentrations of target antibiotics in the soil samples ranged from not detectable to 415.00 μg/kg dry weight with the mean residual levels of the five classes followed order: tetracyclines (82.75 μg/kg) > quinolones (12.78 μg/kg) > macrolides (12.24 μg/kg) > sulfonamides (2.61 μg/kg) > amphenicols (0.06 μg/kg). Moreover, the highest antibiotic levels were found mainly in soil from organic vegetable farms. Risk assessment by using the methods of risk quotient, suggested that oxytetracycline, chlortetracycline, enrofloxacin and ciprofloxacin could pose severe ecological risk in sampled soils. Resistant strains were isolated in 30 samples, with Escherichia coli and Klebsiella pneumonia found the dominant bacterial hosts with resistance genes. Antibiotic resistance genes, including tetA, tetB, qnrS, oqxA, sul1, sul2, ermA and floR, were detected in the strains resistant to: tetracyclines, quinolones, sulfonamides, macrolides and amphenicols resistance, respectively. Overall, there was a correlation between the results of antibiotic risk assessment with the detection of resistance genes from isolated strains in the soils. | 2019 | 30317094 |
| 5286 | 11 | 0.9916 | Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA. Antibiotics are known to enter the environment, not only by human excretion but also through livestock/aquaculture, healthcare facilities, and pharmaceutical industry waste. Once in the environment, antibiotics have the ability to provide a selective pressure in microbial communities thus selecting for resistance. Bayou Lafourche of Southeastern Louisiana serves as the raw source of drinking water for 300,000 people in the region and has previously been shown to receive high amounts of fecal contamination. Four sites along the bayou and one site from its input source on the Mississippi River were monitored for water chemistry, total and fecal coliform estimates, and presence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) for a period of 1 year. Four waste-associated bacterial isolates were tested for resistance to antibiotics (tetracycline, sulfamethoxazole/trimethoprim, cefoxitin, meropenem, imipenem, erythromycin, and vancomycin). Resistant bacteria were further examined with PCR/electrophoresis to confirm the presence of antibiotic resistance genes (Sul1, tet(A), tet(W), tet(X), IMP, KPC, and OXA-48). The bayou appears to meet the Louisiana Department of Environmental Quality (LDEQ) criteria for water chemistry, yet fecal coliforms were consistently higher than LDEQ thresholds, thus indicating fecal contamination. Enterobacteriaceae isolates showed 13.6%, 10.9%, and 19.8% resistant to tetracycline, sulfamethoxazole/trimethoprim, and cefoxitin, respectively, and 11 isolates were confirmed for presence of either tet(A) or Sul1 resistance genes. High fecal coliforms and presence of ARB/ARG may both indicate a presence of anthropogenic or agricultural source of fecal contamination. | 2019 | 30612354 |
| 5247 | 12 | 0.9916 | Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef. | 2018 | 30476443 |
| 1369 | 13 | 0.9916 | Antimicrobial resistance genes in Escherichia coli isolates recovered from a commercial beef processing plantt. The goal of this study was to assess the distribution of antimicrobial resistance (AMR) genes in Escherichia coli isolates recovered from a commercial beef processing plant. A total of 123 antimicrobial-resistant E. coli isolates were used: 34 from animal hides, 10 from washed carcasses, 27 from conveyers for moving carcasses and meat, 26 from beef trimmings, and 26 from ground meat. The AMR genes for beta-lactamase (bla(CMY), bla(SHV), and bla(TEM), tetracycline (tet(A), tet(B), and tet(C)), sulfonamides (sul1, sul2, and sul3), and aminoglycoside (strA and strB) were detected by PCR assay. The distribution of tet(B), tet(C), sul1, bla(TEM), strA, and strB genes was significantly different among sample sources. E. coli isolates positive for the tet(B) gene and for both strA and strB genes together were significantly associated with hide, washed carcass, and ground meat samples, whereas sull gene was associated with washed carcass and beef trimming samples. The bla(TEM) gene was significantly associated with ground meat samples. About 50% of tetracycline-resistant E. coli isolates were positive for tet(A) (14%), tet(B) (15%), or tet(C) (21%) genes or both tet(B) and tet(C) genes together (3%). The sul2 gene or both sul1 and sul2 genes were found in 23% of sulfisoxazole-resistant E. coli isolates, whereas the sul3 gene was not found in any of the E. coli isolates tested. The majority of streptomycin-resistant E. coli isolates (76%) were positive for the strA and strB genes together. The bla(CMY), bla(TEM), and bla(SHV) genes were found in 12, 56, and 4%, respectively, of ampicillin-resistant E. coli isolates. These data suggest that E. coli isolates harboring AMR genes are widely distributed in meat processing environments and can create a pool of transferable resistance genes for pathogens. The results of this study underscore the need for effective hygienic and sanitation procedures in meat plants to reduce the risks of contamination with antimicrobial-resistant bacteria. | 2009 | 19517739 |
| 5272 | 14 | 0.9915 | Prevalence of Antibiotic Resistance Genes in Multidrug-Resistant Enterobacteriaceae on Portuguese Livestock Manure. The exposure of both crop fields and humans to antibiotic-resistant bacteria in animal excreta is an emergent concern of the One Health initiative. This study assessed the contamination of livestock manure from poultry, pig, dairy farms and slaughterhouses in Portugal with resistance determinants. The resistance profiles of 331 Enterobacteriaceae isolates to eight β-lactam (amoxicillin, cefoxitin, cefotaxime, cefpirome, aztreonam, ceftazidime, imipenem and meropenem) and to five non-β-lactam antibiotics (tetracycline (TET), trimethoprim/sulfamethoxazole (SXT), ciprofloxacin (CIP), chloramphenicol (CHL) and gentamicin) was investigated. Forty-nine integron and non-β-lactam resistance genes were also screened for. Rates of resistance to the 13 antibiotics ranged from 80.8% to 0.6%. Multidrug resistance (MDR) rates were highest in pig farm samples (79%). Thirty different integron and resistance genes were identified. These were mainly associated with resistance to CHL (catI and catII), CIP (mainly, qnrS, qnrB and oqx), TET (mainly tet(A) and tet(M)) and SXT (mostly dfrIa group and sul3). In MDR isolates, integron presence and non-β-lactam resistance to TET, SXT and CHL were positively correlated. Overall, a high prevalence of MDR Enterobacteriaceae was found in livestock manure. The high gene diversity for antibiotic resistance identified in this study highlights the risk of MDR spread within the environment through manure use. | 2019 | 30871244 |
| 1360 | 15 | 0.9915 | First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania. This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log(10) colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla(CTX-M) gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log(10) 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log(10) 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania. | 2018 | 28759321 |
| 5269 | 16 | 0.9915 | Prevalence of antibiotic resistance genes in bacteria from Gomti and Ganga rivers: implications for water quality and public health. Rivers serve as a significant habitat and water sources for diverse organisms, including humans. An important environmental and public health concern is the increase in antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquatic ecosystems brought about by excessive pollutant flow. The research highlighted that river water, which is receiving discharge from wastewater treatment plants, is harbouring multidrug-resistant bacteria. River water samples were collected in January, April, July and October 2022 from three separate locations of each Gomti and Ganga river. A total of 114 bacteria were isolated from Gomti as well as the Ganga River. All the isolates were tested for their resistance to various antibiotics by disc diffusion method. The isolated bacteria were tested for the antibiotic resistance genes using PCR and were identified by 16s rRNA sequencing. The ARBs percentages for each antibiotic were as follows: ampicillin (100%); cefotaxime (96.4, 63.1%); erythromycin (52.6, 57.8%); amikacin (68.4, 50.8%); tetracycline (47.3, 54.3%); nalidixic acid (47.3, 45.6%); streptomycin (68.4, 49.1%); gentamycin (43.8, 35%); chloramphenicol (26.3, 33.3%); neomycin (49.1, 29.8%) and ciprofloxacin (24.5, 7.01%). Further, antibiotic resistance genes in Gomti and Ganga water samples disclose distinctive patterns, including resistance to ermB (25, 40%); tetM (25, 33.3%); ampC (44.4, 40%) and cmlA1 (16.6%). Notably cmlA1 resistant genes were absent in all bacterial strains of the Gomti River. Additionally, gyrA gene was not found in both the river water samples. The presence of ARGs in the bacteria from river water shows threat of transferring these genes to native environmental bacteria. To protect the environment and public health, constant research is necessary to fully understand the extent and consequences of antibiotic resistance in these aquatic habitats. | 2024 | 39349711 |
| 1806 | 17 | 0.9915 | Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes. The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes bla TEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (bla CTX-M-1 and bla SHV-12) and seagull feces (bla CMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health. | 2014 | 25191308 |
| 5278 | 18 | 0.9915 | Antibiotic resistance of culturable heterotrophic bacteria isolated from shrimp (Penaeus vannamei) aquaculture ponds. Shrimp aquaculture is one of the fastest growing food-producing avenues, where antibiotics usage has become an issue of great concern due to the development of antimicrobial resistance in bacteria. A total of 2304 bacterial isolates from 192 samples (sediment, water, shrimp, and source water) from Andhra Pradesh, India were screened. Antibiotic resistance of bacterial isolates was highest for oxytetracycline (23.4%) followed by erythromycin (12.7%), co-trimoxazole (10%) ciprofloxacin (9.6%), and chloramphenicol (6%), of which 11.9% isolates were multi-drug resistant. Bacterial isolates from shrimp (26.7%), water (23.9%), and sediment (19.6%) samples exhibited more resistance (p ≤ 0.05) towards oxytetracycline. Higher antibacterial resistance was observed from samples of southern Andhra Pradesh (locations L6 and L7). Gram negative bacteria were more prevalent (64%) and showed significantly (p ≤ 0.01) higher resistance. This study indicated the wider distribution of antibiotic-resistant bacteria in shrimp aquaculture ponds with potential risk to humans and the environment. | 2021 | 34450408 |
| 5256 | 19 | 0.9915 | Characterization of antibiotic resistance genes and bacteria in a municipal water resource recovery facility. Municipal water resource recovery facilities (WRRFs) are important sources of antibiotic-resistant bacteria and genes (ARB and ARGs). In this study, antibiotic-resistant total heterotrophic bacteria (THB(R) ) counts (CFU/ml) cultivated from influent, effluent of activated sludge process, and outflow of disinfection unit of an urban WRRF were investigated for the presence of 16, 32, 64, and 128 μg/ml of nine antibiotics. The isolates of Pseudomonas spp., Acinetobacter spp., and Escherichia coli obtained from effluent of activated sludge process were subjected for molecular identification by detecting the 16S rRNA gene sequences. Additionally, using the polymerase chain reaction method (PCR), the isolates were investigated for the presence of bla(SHV) , bla(TEM) , bla(CTX-M) , bla(VIM) , sul1, and qnrS genes. According to the results, the abundance of THB(R) counts was not significantly reduced by the biological treatment except for cefixime and sulfamethoxazole; it also increased for some antibiotics after disinfection unit. The average removal efficiency of THB(R) resistant to ciprofloxacin, sulfamethoxazole, and ceftazidime were 7.9 ± 1.7%, 41.8 ± 2.1%, and 14.4 ± 6.2%, respectively. Also, all the tested isolates were resistant to at least four antibiotics. For all antibiotics, the resistance ratio (THB(R) /THB) significantly increased in the effluent and after chlorination unit. Among 12 resistant isolates, bla(TEM) and sul1 genes were the most frequently detected ones involved in 92% and 83% of the isolates, respectively. Both bla(TEM) and sul1 genes were found in 100% of E. coli, and 83% and 67% of Pseudomonas spp. isolates, respectively. Further efforts are necessary to limit the transmission of ARB and ARGs from WRRFs into the environment and prevent human health threats. PRACTITIONER POINTS: The ratio of resistance significantly increased after biological treatment. Up to 40% of heterotrophic bacteria in the effluent was antibiotic resistant. bla(TEM) and sul1 genes were more prevalent (92%) in all isolates of bacteria. Both bla(TEM) and sul1 genes were found in 100% of E. coli isolates. Pseudomonas spp. holds bla(TEM) and sul1 genes in 83% and 67% of isolates, respectively. | 2022 | 35765862 |