# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8657 | 0 | 0.9869 | The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges. | 2019 | 30915045 |
| 8561 | 1 | 0.9868 | Three-dimensional synergistic mechanism ofphysical injury, microbiota dysbiosis, and gene transfer in the gut of Cipangopaludina cathayensisunder microplastics and roxithromycin exposure. Microplastics (MPs) and antibiotics pose a combined threat to aquatic organisms by impairing gut health and promoting the spread of antibiotic resistance genes (ARGs). In this study, Cipangopaludina cathayensis was exposed for 28 days to polystyrene MPs, roxithromycin (ROX), and their combination to assess impacts on intestinal barrier integrity, microbiota composition, and ARG proliferation. MPs alone caused significant mucosal damage, villus atrophy, epithelial shedding, and reduced digestive enzyme activities. ROX exposure altered microbiota structure by increasing Bacteroidetes and reducing Firmicutes. Co-exposure (CM group) exacerbated epithelial injury and enzyme inhibition but partially restored balance through enrichment of SCFA-producing, anti-inflammatory bacteria. ARG levels in the CM group rose by over 1000 %, with notable increases in multidrug resistance genes (e.g., blaOXA10) and integrons (e.g., cIntI-1), mainly linked to Bacteroides and Proteobacteria. Transcriptomic data indicated oxidative stress and epithelial disruption under MPs, and upregulation of efflux and integron genes with ROX. Combined exposure triggered DNA repair and SOS pathways, facilitating horizontal gene transfer. These findings highlight a three-dimensional synergistic mechanism-physical damage, microbial dysbiosis, and gene transfer-that amplifies ARG dissemination and intestinal toxicity, underscoring the need to assess ecological risks of composite pollutants in freshwater systems.These processes form a self-reinforcing loop in which physical epithelial damage promotes microbial dysbiosis, which in turn facilitates ARG proliferation through increased permeability and immune disruption. | 2025 | 41067103 |
| 9364 | 2 | 0.9867 | Predictable properties of fitness landscapes induced by adaptational tradeoffs. Fitness effects of mutations depend on environmental parameters. For example, mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes. We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and previous observations on antibiotic resistance mutations. Our model generates a succession of landscapes with predictable properties as antibiotic concentration is varied. The landscape is nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness maxima in the landscapes are evolutionarily accessible from the wild type. This implies that selection for antibiotic resistance in multiple mutational steps is relatively facile despite the complexity of the underlying landscape. | 2020 | 32423531 |
| 8488 | 3 | 0.9866 | Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: Coeffect of oxidative stress and ion transport. Due to the widespread use of loratadine (LOR) as an antihistamine, it is widely distributed in the environment as an emerging contaminant. However, its impact on the dissemination of antibiotic resistance genes (ARGs) remains unclear. This study investigated the effect of LOR on the conjugative transfer of ARGs and elucidated the potential mechanisms through transcriptome analysis. The results showed that LOR significantly promoted the frequency of conjugative transfer up to 1.5- to 8.6-fold higher compared with the control group. Exposure to LOR increased reactive oxidative species (ROS) and intracellular Ca(2+) concentrations, leading to the upregulation of expression of genes related to transmembrane transport and SOS response. Meanwhile, it stimulated the increase of cell membrane permeability. Moreover, LOR exposure could enhance H(+) efflux in donor bacteria, resulting in the decrease of intracellular pH and the elevation of transmembrane potential, which could induce the increase of ion transport, thereby promoting plasmid efflux from the cell membrane. Based on this, we inferred that LOR can induce an increase in ROS level and intracellular Ca(2+) concentrations, and promoted the efflux of intracellular H(+). This, in turn, triggered the intensification of various ion transport processes on the cell membrane, thereby increasing membrane permeability and accelerating plasmid efflux. Ultimately, the coeffect of oxidative stress response and ion transport promoted conjugative transfer. This study demonstrated that LOR significantly promotes plasmid-mediated conjugative transfer of ARGs, providing novel insights into the mechanisms underlying this process. | 2025 | 39919578 |
| 7890 | 4 | 0.9866 | The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review. Many problems in drinking water distribution systems (DWDSs) are caused by microbe, such as biofilm formation, biocorrosion and opportunistic pathogens growth. More iron release from corrosion scales may induce red water. Biofilm played great roles on the corrosion. The iron-oxidizing bacteria (IOB) promoted corrosion. However, when iron-reducing bacteria (IRB) and nitrate-reducing bacteria (NRB) became the main bacteria in biofilm, they could induce iron redox cycling in corrosion process. This process enhanced the precipitation of iron oxides and formation of more Fe(3)O(4) in corrosion scales, which inhibited corrosion effectively. Therefore, the IRB and NRB in the biofilm can reduce iron release and red water occurrence. Moreover, there are many opportunistic pathogens in biofilm of DWDSs. The opportunistic pathogens growth in DWDSs related to the bacterial community changes due to the effects of micropollutants. Micropollutants increased the number of bacteria with antibiotic resistance genes (ARGs). Furthermore, extracellular polymeric substances (EPS) production was increased by the antibiotic resistant bacteria, leading to greater bacterial aggregation and adsorption, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in DWDSs. Moreover, O(3)-biological activated carbon filtration-UV-Cl(2) treatment could be used to control the iron release, red water occurrence and opportunistic pathogens growth in DWDSs. | 2021 | 34593198 |
| 8877 | 5 | 0.9865 | Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. While in transit within and between hosts, uropathogenic Escherichia coli (UPEC) encounters multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Here we show that UPEC, the primary cause of urinary tract infections, can be conditioned to grow at higher rates in the presence of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. When inoculated into the bladder of a mouse, ASN-conditioned UPEC bacteria are far more likely to establish an infection than nonconditioned bacteria. Microarray analysis of ASN-conditioned bacteria suggests that several NsrR-regulated genes and other stress- and polyamine-responsive factors may be partially responsible for this effect. Compared to K-12 reference strains, most UPEC isolates have increased resistance to ASN, and this resistance can be substantially enhanced by addition of the polyamine cadaverine. Nitrosative stress, as generated by ASN, can stimulate cadaverine synthesis by UPEC, and growth of UPEC in cadaverine-supplemented broth in the absence of ASN can also promote UPEC colonization of the bladder. These results suggest that UPEC interactions with polyamines or stresses such as reactive nitrogen intermediates can in effect reprogram the bacteria, enabling them to better colonize the host. | 2009 | 19255192 |
| 8524 | 6 | 0.9865 | Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer. | 2024 | 39277355 |
| 8489 | 7 | 0.9865 | Signaling molecules accelerate the transmission of antibiotic resistance genes under the stress of copper. Heavy metals can accelerate the dissemination of antibiotic resistance genes (ARGs) in aquatic environments by imposing environmental stresses. Signaling molecules play a role in bacterial communication and help bacteria adapt to environmental stresses. However, little is known whether the presence of signaling molecules has an effect on the spread of ARGs induced by heavy metals. In this study, we investigated how N-decanoyl-L-homoserine lactone (C10-HSL) affects copper-induced conjugative transfer of ARGs. We calculated the conjugative transfer frequency and measured reactive oxygen species (ROS) production, membrane permeability, and the expression of relevant genes. The results demonstrated that the addition of C10-HSL increased the conjugative transfer frequency of ARGs under copper ions (Cu(2+)) stress, showing a 7.2-fold increase under 0.5 μM Cu(2+) and 0.39 μM C10-HSL treatment compared to the control. This enhancement was associated with elevated intracellular ROS production and increased membrane permeability. The reduced conjugative transfer frequency under anaerobic conditions or with thiourea treatment supported the key role of ROS in this process. Furthermore, ROS overproduction triggered the SOS response, as evidenced by a 9-fold upregulation of recA expression. C10-HSL also modulated membrane-associated gene expression by upregulating outer membrane porins and downregulating efflux pump genes under Cu(2+)stress. This study provides a new insight into the spread of ARGs in aquatic environments. | 2025 | 40840413 |
| 8789 | 8 | 0.9865 | Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated. | 2016 | 27294415 |
| 8132 | 9 | 0.9865 | Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments. The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge. | 2016 | 26517996 |
| 8513 | 10 | 0.9865 | Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The bacterial infection that involves antimicrobial resistance is a rising global threat to public health. Chlorine-based water disinfection processes can inactivate antibiotic resistant bacteria. However, at the same time, these processes may cause the release of antibiotic resistance genes into the water as free DNA, and consequently increase the risk to disseminate antibiotic resistance via natural transformation. Presently, little is known about the contribution of residual chlorine affecting the transformation of extracellular antibiotic resistance genes (ARGs). This study investigates whether chloramine and free chlorine promote the transformation of ARGs and how this may occur. We reveal that both chloramine and free chlorine, at practically relevant concentrations, significantly stimulated the transformation of plasmid-encoded ARGs by the recipient Acinetobacter baylyi ADP1, by up to a 10-fold increase. The underlying mechanisms underpinning the increased transformations were revealed. Disinfectant exposure induced a series of cell responses, including increased levels of reactive oxygen species (ROS), bacterial membrane damage, ROS-mediated DNA damage, and increased stress response. These effects thus culminated in the enhanced transformation of ARGs. This promoted transformation was observed when exposing disinfectant-pretreated A. baylyi to free plasmid. In contrast, after pretreating free plasmid with disinfectants, the transformation of ARGs decreased due to the damage of plasmid integrity. These findings provide important insight on the roles of disinfectants affecting the horizontal transfer of ARGs, which could be crucial in the management of antibiotic resistance in our water systems. | 2021 | 33941886 |
| 8297 | 11 | 0.9864 | Novel RpoS-Dependent Mechanisms Strengthen the Envelope Permeability Barrier during Stationary Phase. Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE: Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state. | 2017 | 27821607 |
| 7939 | 12 | 0.9864 | Metagenomic insights into the distribution, mobility, and hosts of extracellular antibiotic resistance genes in activated sludge under starvation stress. Extracellular antibiotic resistance genes (eARGs) are important emerging environmental pollutants in wastewater treatment plants (WWTPs). Nutritional substrate deficiency (i.e., starvation) frequently occurs in WWTPs owing to annual maintenance, water quality fluctuation, and sludge storage; and it can greatly alter the antibiotic resistance and extracellular DNA content of bacteria. However, the fate and corresponding transmission risk of eARGs in activated sludge under starvation stress remain largely unknown. Herein, we used metagenomic sequencing to explore the effects of starvation scenarios (carbon, nitrogen, and/or phosphorus deficiency) and environmental conditions (alternating anaerobic-aerobic, anaerobic, anoxic, and aerobic) on the distribution, mobility, and hosts of eARGs in activated sludge. The results showed that 30 days of starvation reduced the absolute abundances of eARGs by 40.9%-88.2%, but high-risk dual and multidrug resistance genes persisted. Starvation, particularly the simultaneous lack of carbon, nitrogen, and phosphorus under aerobic conditions, effectively alleviated eARGs by reducing the abundance of extracellular mobile genetic elements (eMGEs). Starvation also altered the profile of bacterial hosts of eARGs and the bacterial community composition, the latter of which had an indirect positive effect on eARGs via changing eMGEs. Our findings shed light on the response patterns and mechanisms of eARGs in activated sludge under starvation conditions and highlight starvation as a potential strategy to mitigate the risk of previously neglected eARGs in WWTPs. | 2023 | 37060877 |
| 8512 | 13 | 0.9864 | Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H(2)O(2), O(2)(-), and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and bla(TEM)) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems. | 2024 | 38750753 |
| 6741 | 14 | 0.9864 | Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake. Benzylalkyldimethylethyl ammonium compounds are pervasive in natural environments and toxic at high concentrations. The changes in functional genes and microbial diversity in eutrophic lake samples exposed to benzyldimethyldodecyl ammonium chloride (BAC) were assessed. BAC exerted negative effects on bacteria abundance, particularly at concentrations of 100 μg L(-1) and higher. A significant increase in the number of the quaternary ammonium compound-resistant gene qacA/B was recorded within the 10 μg L(-1) treatment after the first day of exposure. Not all antibiotic resistance genes increased in abundance as the concentrations of BAC increased; rather, gene abundances were dependent on the gene type, concentrations of BAC, and contact time. The nitrogen fixation-related gene nifH and ammonia monooxygenase gene amoA were inhibited by high concentrations of BAC after the first day, whereas an increase of the nitrite reductase gene nirK was stimulated by exposure. Microbial communities within higher treatment levels (1000 and 10 000 μg L(-1)) exhibited significantly different community composition compared to other treatment levels and the control. Selective enrichment of Rheinheimera, Pseudomonas, and Vogesella were found in the higher treatment levels, suggesting that these bacteria have some resistance or degradation capacity to BAC. Genes related with RNA processing and modification, transcription, lipid transport and metabolism, amino acid transport and metabolism, and cell motility of microbial community function were involved in the process exposed to the BAC stress. | 2018 | 29414358 |
| 7985 | 15 | 0.9864 | Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. Climate change is expected to increase the frequency of severe drought events followed by heavy rainfall, which will influence growth and activity of soil microorganisms, through osmotic stress and changes in nutrient concentration. There is evidence of rapid recovery of processes and adaptation of communities in soils regularly experiencing drying/rewetting and lower resistance and resilience in nonadapted soils. A microcosm-based study of ammonia-oxidising archaea (AOA) and bacteria (AOB), employing a grassland soil that rarely experiences drought, was used to test this hypothesis and also whether AOB were more resistant and resilient, through greater tolerance of high ammonia concentrations produced during drought and rewetting. Treated soils were dried, incubated for 3 weeks, rewetted, incubated for a further 3 weeks and compared to untreated soils, maintained at a constant moisture content. Nitrate accumulation and AOA and AOB abundance (abundance of respective amoA genes) and community composition (DGGE analysis of AOA amoA and AOB 16S rRNA genes) were poorly adapted to drying-rewetting. AOA abundance and community composition were less resistant than AOB during drought and less resilient after rewetting, at times when ammonium concentration was higher. Data provide evidence for poor adaptation of microbial communities and processes to drying-rewetting in soils with no history of drought and indicate niche differentiation of AOA and AOB associated with high ammonia concentration. | 2014 | 25070168 |
| 8528 | 16 | 0.9864 | Non-negligible effects of sunlight irradiation on generation of VBNC-state antibiotic resistant bacteria in natural water. The viable but non-culturable (VBNC) state antibiotic resistant bacteria (ARB) poses significant environmental risk. The mechanism by which simulated sunlight irradiation induces ARB to enter the VBNC state remains unclear. This study systematically explored the photochemical generation mechanism of VBNC-ARB in natural water. Ampicillin-resistant Escherichia coli (AR E. coli) was selected as a representative ARB. The results showed that AR E. coli lost cultivability under sunlight with 91.1 % of AR E. coli entering the VBNC state. Suwannee River fulvic acid (SRFA) slightly enhanced this effect and can induce 95.9 % of AR E. coli into the VBNC state. Under sunlight exposure, oxidative stress and the toxin-antitoxin (TA) system in AR E. coli were identified as key factors in inducing the VBNC state. This process was accompanied by a deterioration in cell membrane fluidity, upregulation of cell wall and outer membrane-related genes, and toxin-mediated inhibition of DNA replication. Importantly, AR E. coli retained intact antibiotic resistance genes (ARGs) and could reactivate these genes in the dark, with SRFA promoting this recovery. Therefore, VBNC-ARB remains antibiotic resistance and increases virulence expression, consequently increasing human health risks. These findings underscore the need for effective strategies to manage VBNC-ARB in environmental systems. | 2025 | 40280065 |
| 539 | 17 | 0.9863 | A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation. | 2010 | 21059273 |
| 7650 | 18 | 0.9863 | Contamination of hay and haylage with enteric bacteria and selected antibiotic resistance genes following fertilization with dairy manure or biosolids. The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In the field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids were applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: at harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than hay from unamended control plots. The fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids resulted in a few gene targets being more abundant in hay during the first harvest. Fermentation of hay resulted in an increase in the abundance of gene targets, but this occurred with hay from both the amended and control plots. Overall, the application of fecal amendments resulted in an increase in the abundance of some gene targets associated with antibiotic resistance in the first cut hay. | 2022 | 35020524 |
| 6911 | 19 | 0.9863 | Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG. | 2024 | 38643583 |