COHORT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
306500.9886Species diversity, virulence, and antimicrobial resistance of the nasal staphylococcal and mammaliicoccal biota of reindeer. BACKGROUND: Staphylococcus (S.) spp. and Mammaliicoccus (M.) spp., in addition to their established role as components of the human and animal microbiota, can also cause opportunistic infections. This study aimed to characterize bacteria recovered from nasal cavities of healthy adult reindeer from two farms located in Poland (15 reindeer) and Germany (15 reindeer). The research include bacteria isolation, species identification, detection of selected superantigen (SAg) genes, assessment of biofilm-forming capability in vitro, and evaluation of antimicrobial resistance. RESULTS: Seventy-four staphylococci and mammaliicocci from 14 different species were isolated from 30 nasal swabs, with one to four strains obtained from each reindeer. The most frequently identified species was S. equorum, followed by S. succinus, M. sciuri, S. xylosus, M. lentus, S. chromogenes, S. devriesei, M. vitulinus, S. auricularis, S. agnetis, S. edaphicus, S. petrasii, S. simulans, and S. warneri. A greater species diversity was observed among the reindeer from Poland compared to those from Germany. All isolated bacteria were coagulase negative and clumping factor negative and did not carry any of the 21 analyzed SAg genes. M. sciuri demonstrated the highest antimicrobial resistance (100%), followed by S. succinus (91%) and S. equorum (78%). Resistance to rifampicin was the most common (30% strains). Sixteen strains (22%) exhibited biofilm production at least 10% greater than the strong biofilm-forming S. aureus ATCC 6538. CONCLUSIONS: This study reveals a significant knowledge gap regarding the nasal microbiota of reindeer. It contributes to our understanding of staphylococcal and mammaliicoccal biota of reindeer and underscores the necessity for monitoring of microbial populations to assess their health implications for both animals and humans, particularly concerning the zoonotic transmission of bacteria.202540452044
516710.9884Decreased Antimicrobial Resistance Gene Richness Following Fecal Microbiota, Live-jslm (REBYOTA®) Administration: Post Hoc Analysis of PUNCH CD3. BACKGROUND: The human gastrointestinal microbiome helps maintain vital functions related to overall health, including resistance to pathogen colonization. Disruption of the microbiome, leading to loss of colonization resistance, can be caused by multiple factors, including antimicrobial use. The loss of colonization resistance may lead to establishment or proliferation of opportunistic bacteria that carry genes associated with antimicrobial resistance, potentially increasing the risk of infection by such antimicrobial-resistant bacteria. A potential approach to mitigating this risk involves restoration of healthier microbiota and pathogen colonization resistance. METHODS: A metagenomic sequencing method was used to conduct a post hoc analysis of antibiotic resistance gene richness among fecal samples from participants administered fecal microbiota, live-jslm (REBYOTA; abbreviated as RBL) or placebo in the PUNCH CD3 study (NCT03244644) for the prevention of recurrent Clostridioides difficile infection. RESULTS: At baseline, participants had higher antibiotic resistance gene richness than a representative healthy cohort. Over time, RBL responders had lower antibiotic resistance gene richness at the class, group, and mechanism levels as compared with placebo responders. These differences were evident as early as 1 week after administration and sustained for at least 6 months. RBL responders also had decreased richness of antibiotic resistance genes deemed high risk based on designated bacterial public health threats. CONCLUSIONS: These data support a model in which microbiota-based products, including RBL, may reduce antibiotic resistance gene richness, thereby possibly reducing the risk of antimicrobial-resistant organism infection. TRIAL REGISTRATION: NCT03244644 (https://clinicaltrials.gov/study/NCT03244644; 9 August 2017).202540672762
254120.9883Increased antibiotic resistance in preterm neonates under early antibiotic use. The standard use of antibiotics in newborns to empirically treat early-onset sepsis can adversely affect the neonatal gut microbiome, with potential long-term health impacts. Research into the escalating issue of antimicrobial resistance in preterm infants and antibiotic practices in neonatal intensive care units is limited. A deeper understanding of the effects of early antibiotic intervention on antibiotic resistance in preterm infants is crucial. This retrospective study employed metagenomic sequencing to evaluate antibiotic resistance genes (ARGs) in the meconium and subsequent stool samples of preterm infants enrolled in the Routine Early Antibiotic Use in Symptomatic Preterm Neonates study. Microbial metagenomics was conducted using a subset of fecal samples from 30 preterm infants for taxonomic profiling and ARG identification. All preterm infants exhibited ARGs, with 175 unique ARGs identified, predominantly associated with beta-lactam, tetracycline, and aminoglycoside resistance. Notably, 23% of ARGs was found in preterm infants without direct or intrapartum antibiotic exposure. Post-natal antibiotic exposure increases beta-lactam/tetracycline resistance while altering mechanisms that aid bacteria in withstanding antibiotic pressure. Microbial profiling revealed 774 bacterial species, with antibiotic-naive infants showing higher alpha diversity (P = 0.005) in their microbiota and resistome compared with treated infants, suggesting a more complex ecosystem. High ARG prevalence in preterm infants was observed irrespective of direct antibiotic exposure and intensifies with age. Prolonged membrane ruptures and maternal antibiotic use during gestation and delivery are linked to alterations in the preterm infant resistome and microbiome, which are pivotal in shaping the ARG profiles in the neonatal gut.This study is registered with ClinicalTrials.gov as NCT02784821. IMPORTANCE: A high burden of antibiotic resistance in preterm infants poses significant challenges to neonatal health. The presence of antibiotic resistance genes, along with alterations in signaling, energy production, and metabolic mechanisms, complicates treatment strategies for preterm infants, heightening the risk of ineffective therapy and exacerbating outcomes for these vulnerable neonates. Despite not receiving direct antibiotic treatment, preterm infants exhibit a concerning prevalence of antibiotic-resistant bacteria. This underscores the complex interplay of broader influences, including maternal antibiotic exposure during and beyond pregnancy and gestational complications like prolonged membrane ruptures. Urgent action, including cautious antibiotic practices and enhanced antenatal care, is imperative to protect neonatal health and counter the escalating threat of antimicrobial resistance in this vulnerable population.202439373498
519330.9882Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.202438128408
254040.9882Equine sinusitis aetiology is linked to sinus microbiome by amplicon sequencing. BACKGROUND: Information regarding the microbiome in sinusitis using genetic sequencing is lacking and more-in-depth understanding of the microbiome could improve antimicrobial selection and treatment outcomes for cases of primary sinusitis. OBJECTIVES: To describe sinus microbiota in samples from horses with sinusitis and compare microbiota and the presence of antimicrobial resistance genes between primary, dental-related and other secondary causes of sinusitis. STUDY DESIGN: Retrospective case series. METHODS: Records of equine sinusitis from 2017 to 2021 were reviewed and historical microbial amplicon sequence data were obtained from clinical diagnostic testing of sinus secretions. Following bioinformatic processing of bacterial and fungal sequence data, the sinus microbiota and importance of sinusitis aetiology among other factors were investigated from the perspectives of alpha diversity (e.g., number of operational taxonomic units [OTUs], Hill1 Diversity), beta diversity, and differentially abundant taxa. Quantitative PCR allowed for comparisons of estimated bacterial abundance and detection rate of common antibiotic resistance-associated genes. In a smaller subset, longitudinal analysis was performed to evaluate similarity in samples over time. RESULTS: Of 81 samples analysed from 70 horses, the bacterial microbiome was characterised in 66, and fungal in five. Only sinusitis aetiology was shown to significantly influence microbiome diversity and composition (p < 0.05). Dental-related sinusitis (n = 44) was associated with a significantly higher proportion of obligate anaerobic bacteria, whereas primary sinusitis (n = 12) and other (n = 10) groups were associated with fewer bacteria and higher proportions of facultative anaerobic and aerobic genera. Antimicrobial resistance genes and fungal components were exclusively identified in dental-related sinusitis. MAIN LIMITATIONS: Retrospective nature, incomplete prior antimicrobial administration data. CONCLUSIONS: Molecular characterisation in sinusitis identifies microbial species which may be difficult to isolate via culture, and microbiome profiling can differentiate sinusitis aetiology, which may inform further treatment, including antimicrobial therapy.202336199163
272050.9881Phenotypic and genotypic characterization of antimicrobial resistance in Enterococcus spp. Isolated from the skin microbiota of channel catfish (Ictalurus punctatus) in Southeastern United States. BACKGROUND: Aquaculture systems may contribute to the emergence and persistence of antimicrobial-resistant (AMR) bacteria, posing risks to animal, environmental, and human health. This study characterized the phenotypic and genotypic antimicrobial resistance profiles of Enterococcus spp. isolated from the skin microbiota of 125 channel catfish (Ictalurus punctatus) harvested from two earthen ponds in Alabama, USA. METHODS: Skin swabs from the body of channel catfish were enriched in Enterococcosel broth and cultured on Enterococcosel agar at 28 °C for 24 h. Isolates were confirmed using Biolog Gen III and VITEK(®)2, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Thirty-five randomly sampled isolates underwent whole-genome sequencing for genotypic characterization. RESULTS: 36% of isolates exhibited multidrug resistance (resistance to ≥ 3 antimicrobial classes), with the highest resistance rates observed for ampicillin (44.8%), rifampicin (42.4%), and tetracycline (38.4%). The most prevalent resistance genes were aac(6')-Iid (65.7%), aac(6')-Ii (22.9%), efmA, and msr(C) (20.0% each). Plasmid replicons rep1 and repUS15 frequently co-occurred with resistance genes. Biofilm-associated genes, including efaA, fsrA, fsrB, sprE, ebpABC, ace, and scm, were commonly detected. Multivariate analyses (PERMANOVA, PCA) revealed no significant species-level differences in resistance burden or biofilm gene carriage, indicating similar resistance and virulence gene carriage across species in this dataset. CONCLUSIONS: The skin microbiota of pond-raised catfish harbors antimicrobial-resistant Enterococcus spp. with mobile resistance elements and biofilm-associated virulence factors, suggesting a potential role in AMR persistence within aquaculture settings. These findings support the need for targeted AMR surveillance in fish-associated microbiota as part of integrated One Health strategies.202540760424
713160.9881Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract.202336850017
241870.9880Baseline azithromycin resistance in the gut microbiota of preterm born infants. BACKGROUND: Macrolides, including azithromycin, are increasingly used in preterm-born infants to treat Ureaplasma infections. The baseline carriage of macrolide resistance genes in the preterm stool microbiota is unknown. OBJECTIVES: Identify carriage of azithromycin resistant bacteria and the incidence of macrolide resistant genes. METHODS: Azithromycin resistant bacteria were isolated from serial stool samples obtained from preterm infants (≤32 weeks' gestation) by culturing aerobically/anaerobically, in the presence/absence of azithromycin. Using quantitative PCR, we targeted 6 common macrolide resistance genes (erm(A), erm(B), erm(C), erm(F), mef(A/E), msr(A)) in DNA extracted from selected bacteria resistant to azithromycin. RESULTS: From 89 stool samples from 37 preterm-born infants, 93.3% showed bacterial growth in aerobic or anaerobic conditions. From the 280 azithromycin resistant isolates that were identified, Staphylococcus (75%) and Enterococcus (15%) species dominated. Macrolide resistance genes were identified in 91% of resistant isolates: commonest were erm(C) (46% of isolates) and msr(A) (40%). Multiple macrolide resistance genes were identified in 18% of isolates. CONCLUSION: Macrolide resistance is common in the gut microbiota of preterm-born infants early in life, most likely acquired from exposure to the maternal microbiota. It will be important to assess modulation of macrolide resistance, if macrolide treatment becomes routine in the management of preterm infants. IMPACT STATEMENT: Azithromycin resistance is present in the stool microbiota in the first month of life in preterm infants 91% of azithromycin resistant bacteria carried at least one of 6 common macrolide resistant genes Increasing use of macrolides in the preterm population makes this an important area of study.202437550487
512280.9880Clinical long-read metagenomic sequencing of culture-negative infective endocarditis reveals genomic features and antimicrobial resistance. BACKGROUND: Infective endocarditis (IE) poses significant diagnostic challenges, particularly in blood culture-negative cases where fastidious bacteria evade detection. Metagenomic-based nanopore sequencing enables rapid pathogen detection and provides a new approach for the diagnosis of IE. METHOD: Two cases of blood culture-negative infective endocarditis (IE) were analyzed using nanopore sequencing with an in silico host-depletion approach. Complete genome reconstruction and antimicrobial resistance gene annotation were successfully performed. RESULTS: Within an hour of sequencing, EPI2ME classified nanopore reads, identifying Corynebacterium striatum in IE patient 1 and Granulicatella adiacens in IE patient 2. After 18 h, long-read sequencing successfully reconstructed a single circular genome of C. striatum in IE patient 1, whereas short-read sequencing was used to compare but produced fragmented assemblies. Based on these results, long-read sequencing was exclusively used for IE patient 2, allowing for the complete and accurate assembly of G. adiacens, confirming the presence of these bacteria in the clinical samples. In addition to pathogen identification, antimicrobial resistance (AMR) genes were detected in both genomes. Notably, in C. striatum, regions containing a class 1 integron and multiple novel mobile genetic elements (ISCost1, ISCost2, Tn7838 and Tn7839) were identified, collectively harbouring six AMR genes. This is the first report of such elements in C. striatum, highlighting the potential of nanopore long-read sequencing for comprehensive pathogen characterization in IE cases. CONCLUSIONS: This study highlights the effectiveness of host-depleted, long-read nanopore metagenomics for direct pathogen identification and accurate genome reconstruction, including antimicrobial resistance gene detection. The approach enables same-day diagnostic reporting within a matter of hours. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-025-11741-5.202541087996
306690.9880Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.202134061267
2542100.9879Bacterial colonization and antimicrobial resistance genes in neonatal enteral feeding tubes. Enteral feeding is a key component of care in neonatal intensive care units (NICUs); however, feeding tubes harbor microbes. These microbes have the potential to cause disease, yet their source remains controversial and clinical recommendations to reduce feeding tube colonization are lacking. This study aims to improve our understanding of the bacteria in neonatal feeding tubes and to evaluate factors that may affect these bacteria. 16S rRNA gene sequencing was used to characterize the bacteria present in pharyngeal, esophageal, and gastric portions of feeding tubes, residual fluid of the tubes, and infant stool using samples from 47 infants. Similar distributions of taxa were observed in all samples, although beta diversity differed by sample type. Feeding tube samples had lower alpha diversity than stool samples, and alpha diversity increased with gestational age, day of life, and tube dwell time. In a subset of samples from 6 infants analyzed by whole metagenome sequencing, there was greater overlap in transferable antimicrobial resistance genes between tube and fecal samples in breast milk fed infants than in formula fed infants. These findings develop our understanding of neonatal feeding tube colonization, laying a foundation for research into methods for minimizing NICU patients' exposure to antimicrobial resistant microbes.201930915455
2550110.9879Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. BACKGROUND: The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. RESULTS: From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. CONCLUSIONS: The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection for four resistance genes. While it was not possible to disentangle the effects of SDD from confounding variables in the patient cohort, our data suggest that the risks associated with ICU hospitalization and SDD on selection for antibiotic resistance are limited. However, we found evidence indicating that recolonization of the gut by antibiotic-resistant bacteria may occur upon ICU discharge and cessation of SDD.201728803549
5803120.9879Face mask sampling reveals antimicrobial resistance genes in exhaled aerosols from patients with chronic obstructive pulmonary disease and healthy volunteers. INTRODUCTION: The degree to which bacteria in the human respiratory tract are aerosolised by individuals is not established. Building on our experience sampling bacteria exhaled by individuals with pulmonary tuberculosis using face masks, we hypothesised that patients with conditions frequently treated with antimicrobials, such as chronic obstructive pulmonary disease (COPD), might exhale significant numbers of bacteria carrying antimicrobial resistance (AMR) genes and that this may constitute a previously undefined risk for the transmission of AMR. METHODS: Fifteen-minute mask samples were taken from 13 patients with COPD (five paired with contemporaneous sputum samples) and 10 healthy controls. DNA was extracted from cell pellets derived from gelatine filters mounted within the mask. Quantitative PCR analyses directed to the AMR encoding genes: blaTEM (β-lactamase), ErmB (target methylation), mefA (macrolide efflux pump) and tetM (tetracycline ribosomal protection protein) and six additional targets were investigated. Positive signals above control samples were obtained for all the listed genes; however, background signals from the gelatine precluded analysis of the additional targets. RESULTS: 9 patients with COPD (69%), aerosolised cells containing, in order of prevalence, mefA, tetM, ErmB and blaTEM, while three healthy controls (30%) gave weak positive signals including all targets except blaTEM. Maximum estimated copy numbers of AMR genes aerosolised per minute were mefA: 3010, tetM: 486, ErmB: 92 and blaTEM: 24. The profile of positive signals found in sputum was not concordant with that in aerosol in multiple instances. DISCUSSION: We identified aerosolised AMR genes in patients repeatedly exposed to antimicrobials and in healthy volunteers at lower frequencies and levels. The discrepancies between paired samples add weight to the view that sputum content does not define aerosol content. Mask sampling is a simple approach yielding samples from all subjects and information distinct from sputum analysis. Our results raise the possibility that patient-generated aerosols may be a significant means of AMR dissemination that should be assessed further and that consideration be given to related control measures.201830271606
2267130.9878MOLECULAR CHARACTERIZATION AND DETECTION OF MULTIDRUGRESISTANT GENE IN BACTERIAL ISOLATES CAUSING LOWER RESPIRATORY TRACT INFECTIONS (LRTI) AMONG HIV/AIDS PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) IN UYO, SOUTH-SOUTH NIGERIA. BACKGROUND: Antibiotic-resistant genes (ARGs) pose a significant challenge in modern medicine, rendering infections increasingly difficult to treat as bacteria acquire mechanisms to resist antibiotics. Addressing ARGs necessitates a multifaceted approach, encompassing surveillance efforts to monitor their presence and the development of strategies aimed at managing and curbing the spread of antibiotic resistance. Hence, this study characterized the genetic determinants of antibiotic resistance among isolates responsible for Lower Respiratory Tract Infections (LRTIs) in People Living with HIV/AIDS (PLWHA) in Uyo. METHODS: Sputum samples were collected from 61 LRTI suspects, with bacterial isolates identified using VITEK-2 technology. Polymerase chain reaction assays were employed to detect resistance genes within the isolates. RESULTS: Results revealed a bacterial etiology in 39.3% of the samples, with a majority (79.2%) originating from St. Luke Hospital, Anua (SLHA), and the remainder (20.8%) from the University of Uyo Teaching Hospital (UUTH). Staphylococcus aureus emerged as the predominant isolate (46.6%), while resistance was notably high against Gentamicin and Sulphamethazole/Trimethoprim. Conversely, Azithromycin, imipenem, clindamycin, erythromycin, and ceftriaxone displayed relatively lower resistance levels across all isolates. Notably, four resistance genes CTX-M, Aac, KPC, and MecA were identified, with CTX-M detected in all multidrug-resistant isolates. This underscores the predominantly community-acquired nature of resistance as conferred by CTX-M. CONCLUSION: In conclusion, this study underscores the critical importance of continued vigilance and proactive measures in combating antibiotic resistance, particularly within vulnerable populations such as PLWHA. By elucidating the genetic mechanisms underlying antibiotic resistance, informed targeted interventions can be mitigated to curb threats posed by multidrug-resistant bacteria in clinical settings.202440385712
2269140.9878Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania.202539833938
2268150.9878Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. BACKGROUND: Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). METHODS: A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. RESULTS: A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSL(B) and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSL(B) and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. CONCLUSION: High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSL(B) and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria.202134866919
5161160.9878Genomic analysis of contaminant Stenotrophomonas maltophilia, from placental swab culture, carrying antibiotic resistance: a potential hospital laboratory contaminant. Acute chorioamnionitis has been considered as reflective of amniotic fluid infection. Standard microbiological work ups for causative microorganism of intra-amniotic infection is based on microbial identification. However, frequency of positive placental culture is varied depending on placental sampling techniques, contaminations, methods of microbiologic work ups or comprehensive microbiologic work ups. In this report, we performed a hybrid whole genome sequencing of a proven bacterial contaminant obtained from placental culture in a patient with preterm labor and acute chorioamnionitis. This is to unveil genetic characterization of contaminant Stenotrophomonas maltophilia habouring antibiotic resistance genes. Stenotrophomonas maltiphilia was proven to be bacterial contaminant since Ureaplasma urealyticum was subsequently demonstrated in amniotic fluid by 16 S rRNA gene Sanger sequencing. Cultivation results from other sources were no growth. We identified Stenotrophomonas maltiphilia strain RAOG732 which carried several antibiotic resistance genes, including aminoglycoside, fluoroquiolone and beta-lactam. Biofilm production genes were also identified in this genome. We firstly utilized a hybrid sequencing approach to investigate the genome of S. maltiphilia in the patient with preterm and acute chorioamnionitis, a proven bacterial laboratory contaminant. The analysis provided several antibiotic resistance-associated and genes biofilm-associated genes. The detection of S. maltiphilia raised the awareness of the colonization of biofilm-producing bacteria in hospitals, where surveillance for decontamination is necessary.202540594762
5465170.9878The genotypic characterization of Streptococcus pluranimalium from aborted bovine fetuses in British Columbia, Canada. INTRODUCTION: Bovine abortions result in significant economic losses to dairy producers, and bacteria are among the most common causes of these abortions. In 2021, Streptococcus pluranimalium was isolated from a dairy abortion case for the first time in British Columbia (BC), Canada. This bacterium has previously been recovered from the reproductive tracts of dairy cattle and various other species, including humans. METHODS: Between 2021 and 2023, S. pluranimalium was isolated from the placenta, fetal lung, and/or fetal abomasal contents of 10 aborted dairy fetuses submitted for routine abortion diagnostics. This study was conducted to better characterize the genotype of these 10 isolates. The histopathology of the bovine abortions was examined, and the BC strains were sequenced using Nanopore technology and underwent bioinformatic analysis. RESULTS: The BC strains had an average genome size of 2,313,582 base pairs and an average GC content of 38.59%. Based on whole genome phylogeny, the BC strains were clustered together and distinctly separated from other publicly available strains of this species from different regions and isolation sources. Through Clusters of Orthologous Groups analysis, the BC strains contained a larger proportion of genes associated with the mobilome. Additionally, although we identified only a few antibiotic resistance genes or virulence factors (VFs) in these strains, several of these genes were located within prophage sequences. DISCUSSION: Although the clinical and pathological significance of these bacteria in most abortion cases remains unclear, our findings underscore the importance of continued surveillance and research into uncommon pathogens to better understand their biology and potential impact on human and animal health.202540574982
2594180.9877Longitudinal changes in the nasopharyngeal resistome of South African infants using shotgun metagenomic sequencing. INTRODUCTION: Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. METHODS: As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. RESULTS: AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. CONCLUSION: This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.202032320455
2544190.9877Antibiotic resistance potential of the healthy preterm infant gut microbiome. BACKGROUND: Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. RESULTS: Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. CONCLUSIONS: We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.201728149696