COHABITANTS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
716000.9319High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.202439080455
348010.9317Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM(10)) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 10(4), 5.6 × 10(4) and 5.1 × 10(2) copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment.202235717091
721120.9312Contribution of Manure-Spreading Operations to Bioaerosols and Antibiotic Resistance Genes' Emission. Manure spreading from farm animals can release antibiotic-resistant bacteria (ARB) carrying antimicrobial resistance genes (ARGs) into the air, posing a potential threat to human and animal health due to the intensive use of antibiotics in the livestock industry. This study analyzed the effect of different manure types and spreading methods on airborne bacterial emissions and antibiotic resistance genes in a controlled setting. Cow, poultry manure, and pig slurry were spread in a confined environment using two types of spreaders (splash plate and dribble bar), and the resulting emissions were collected before, during, and after spreading using high-volume air samplers coupled to a particle counter. Total bacteria, fecal indicators, and a total of 38 different subtypes of ARGs were further quantified by qPCR. Spreading poultry manure resulted in the highest emission rates of total bacteria (10(11) 16S gene copies/kg manure spread), Archaea (10(6) 16S gene copies/kg manure), Enterococcus (10(5) 16S gene copies/kg manure), and E. coli (10(4) 16S gene copies/kg manure), followed by cow manure and pig slurry with splash plates and the dribble bar. Manure spreading was associated with the highest rates of airborne aminoglycoside genes for cow and poultry (10(6) gene copies/kg manure), followed by pig slurry (10(4) gene copies/kg manure). This study shows that the type of manure and spreading equipment can affect the emission rates of airborne bacteria, and ARGs.202337512969
764630.9312Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system.202540244481
716440.9309Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators.202540858019
705550.9306Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs.202032092547
349860.9304Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters.202133786766
679870.9304Diet-driven diversity of antibiotic resistance genes in wild bats: implications for public health. Wild bats may serve as reservoirs for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria, potentially contributing to antibiotic resistance and pathogen transmission. However, current assessments of bats' antibiotic resistance potential are limited to culture-dependent bacterial snapshots. In this study, we present metagenomic evidence supporting a strong association between diet, gut microbiota, and the resistome, highlighting bats as significant vectors for ARG propagation. We characterized gut microbiota, ARGs, and mobile genetic elements (MGEs) in bats with five distinct diets: frugivory, insectivory, piscivory, carnivory, and sanguivory. Our analysis revealed high levels of ARGs in bat guts, with limited potential for horizontal transfer, encompassing 1106 ARGs conferring resistance to 26 antibiotics. Multidrug-resistant and polymyxin-resistant genes were particularly prevalent among identified ARG types. The abundance and diversity of ARGs/MGEs varied significantly among bats with different dietary habits, possibly due to diet-related differences in microbial composition. Additionally, genetic linkage between high-risk ARGs and multiple MGEs was observed on the genomes of various zoonotic pathogens, indicating a potential threat to human health from wild bats. Overall, our study provides a comprehensive analysis of the resistome in wild bats and underscores the role of dietary habits in wildlife-associated public health risks.202539892320
349780.9304Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. To evaluate the seasonal distribution of antibiotic resistance genes (ARGs) and explore the reason for their patterns in different seasons and different systems, two wastewater treatment systems were selected and analyzed using high-throughput qPCR. Linear discriminant analysis (LDA) effect size (LEfSe) was used to discover the differential ARGs (biomarkers) and estimate the biomarkers' effect size. We found that the total absolute abundances of ARGs in inflows and excess sludge samples had no obvious seasonal fluctuations, while those in winter outflow samples decreased in comparison with the inflow samples. Eleven differentially abundant ARGs (biomarker genes, BmGs) (aadA5-02, aac-6-II, cmlA1-01, cmlA1-02, blaOXA10-02, aadA-02, tetX, aadA1, ereA, qacEΔ1-01, and blaTEM) in summer samples and 10 BmGs (tet-32, tetA-02, aacC2, vanC-03, aac-6-I1, tetE, ermB, mefA, tnpA - 07, and sul2) in winter samples were validated. According to 16S rRNA gene sequencing, the relative abundance of bacteria at the phylum level exhibited significant seasonal changes in outflow water (OW), and biomarker bacteria (BmB) were discovered at the family (or genus) level. Synechococcus and vadinCA02 are BmB in summer, and Trichococcus, Lactococcus, Pelosinus, Janthinobacterium, Nitrosomonadaceae and Sterolibacterium are BmB in winter. In addition, BmB have good correlations with BmGs in the same season, which indicates that bacterial community changes drive different distributions of ARGs during seasonal changes and that LEfSe is an acute and effective method for finding significantly different ARGs and bacteria between two or more classes. In conclusion, this study demonstrated the seasonal changes of BmGs and BmB at two wastewater treatment systems.201829169020
705490.9303Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs.202031892399
3209100.9302The Antibiotic Resistome and Its Association with Bacterial Communities in Raw Camel Milk from Altay Xinjiang. Raw camel milk is generally contaminated with varied microbiota, including antibiotic-resistant bacteria (ARB), that can act as a potential pathway for the spread of antibiotic resistance genes (ARGs). In this study, high-throughput quantitative PCR and 16S rRNA gene-based Illumine sequencing data were used to establish a comprehensive understanding of the antibiotic resistome and its relationship with the bacterial community in Bactrian camel milk from Xinjiang. A total of 136 ARGs and up to 1.33 × 10(8) total ARG copies per gram were identified, which predominantly encode resistance to β-lactamas and multidrugs. The ARGs' profiles were mainly explained by interactions between the bacteria community and physicochemical indicators (77.9%). Network analysis suggested that most ARGs exhibited co-occurrence with Corynebacterium, Leuconostoc and MGEs. Overall, raw camel milk serves as a reservoir for ARGs, which may aggravate the spread of ARGs through vertical and horizontal gene transfer in the food chain.202337959048
3517110.9302Characterization of the bacterioplankton community and its antibiotic resistance genes in the Baltic Sea. The residues from human environments often contain antibiotics and antibiotic resistance genes (ARGs) that can contaminate natural environments; the clearest consequence of that is the selection of antibiotic-resistant bacteria. The Baltic Sea is the second largest isolated brackish water reservoir on Earth, serving as a drainage area for people in 14 countries, which differ from one another in antibiotic use and sewage treatment policies. The aim of this study was to characterize the bacterioplankton structure and quantify ARGs (tetA, tetB, tetM, ermB, sul1, blaSHV, and ampC) within the bacterioplankton community of the Baltic Sea. Quantitative polymerase chain reaction was applied to quantify ARGs from four different sampling sites of the Baltic Sea over 2 years, and the bacterial communities were profiled sequencing the V6 region of the 16S rRNA gene on Illumina HiSeq2000. The results revealed that all the resistance genes targeted in the study were detectable from the Baltic Sea bacterioplankton. The percentage of tetA, tetB, tetM, ermB, and sul1 genes in the sea bacterial community varied between 0.0077% and 0.1089%, 0.0003% and 0.0019%, 0.0001% and 0.0105%, 0% and 0.0136%, and 0.0001% and 0.0438%, respectively. The most numerous ARG detected was the tetA gene and this gene also had the highest proportion in the whole microbial community. A strong association between bacterioplankton ARGs' abundance data and community phylogenetic composition was found, implying that the abundance of most of the studied ARGs in the Baltic Sea is determined by fluctuations in its bacterial community structure.201423941523
7358120.9301Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions. Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal.202235016024
6635130.9301Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. An antibiotic resistance (AR) Dashboard application is being developed regarding the occurrence of antibiotic resistance genes (ARG) and bacteria (ARB) in environmental and clinical settings. The application gathers and geospatially maps AR studies, reported occurrence and antibiograms, which can be downloaded for offline analysis. With the integration of multiple data sets, the database can be used on a regional or global scale to identify hot spots for ARGs and ARB; track and link spread and transmission, quantify environmental or human factors influencing presence and persistence of ARG harboring organisms; differentiate natural ARGs from those distributed via human or animal activity; cluster and compare ARGs connections in different environments and hosts; and identify genes that can be used as proxies to routinely monitor anthropogenic pollution. To initially populate and develop the AR Dashboard, a qPCR ARG array was tested with 30 surface waters, primary influent from three waste water treatment facilities, ten clinical isolates from a regional hospital and data from previously published studies including river, park soil and swine farm samples. Interested users are invited to download a beta version (available on iOS or Android), submit AR information using the application, and provide feedback on current and prospective functionalities.201626850162
7165140.9301Mobile genetic elements are the Major driver of High antibiotic resistance genes abundance in the Upper reaches of huaihe River Basin. Rivers are considered a vital reservoir of antibiotic resistance genes (ARGs) and are critical to disseminate ARGs. The present study delved into the ARGs pollution of the sediments in the upper reaches of Huaihe river, one of the seven longest rivers in China, by high-throughput quantitative PCR. Subsequently, the relationship between ARGs and the bacterial community/mobile genetic elements (MGEs) was determined. As revealed from the results, the overall ARGs ranged from 2.65×10(-3) to 6.14×10(-2)/16S copies, and the abundance of ARGs in the tributaries was significantly higher than that in the mainstreams (p<0.05). Moreover, the ARGs introduced by tributaries were capable of affecting the whole mainstream of Huaihe river. As suggested from the results of co-occurrence analysis and pRDA analysis, MGEs were reported as the major driver to disseminate ARGs in the upper reaches of Huaihe river basin. The larger the MGEs proportion, the higher the likelihood of ARGs transferring from antibiotic resistance bacteria to human pathogens in Huaihe river.202132629348
3072150.9300Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans.202133872913
3078160.9300Microbiome of Dipteran vectors associated with integron and antibiotic resistance genes in South Korea. The spread of antibiotic resistance genes (ARGs) across the environment and the role that organisms that interact with humans play as reservoirs of resistant bacteria pose important threats to public health. Flies are two-winged insects composing the order Diptera, which includes synanthropic species with significant ecological roles as pollinators, vectors, and decomposers. Here, we used iSeq100 metabarcoding to characterize the microbiome of six dipteran species in South Korea: Lucilia sericata, Lucilia illustris, Culex pipiens, Aedes vexans, Psychoda alternata and Clogmia albipunctata. We profiled a panel of common ARGs and performed correlation network analysis of the microbiome and resistome to identify co-occurrence patterns of bacterial amplicon sequence variants (ASVs) and resistance genes. We detected blaTEM, ermB, tetB, tetC, aac(6')-Ib-cr, cat2, sul1, qepA, int1 and int2, but no blaSHV, mecA, tetA or cat1. Notably, co-occurrence analysis showed highly mobile genes such as qepA, ermB and sul1 were associated with integron of class 1 integrase presence. These, along with aac(6')-Ib-cr were detected at higher rates across multiple species. Microbiome composition was distinct across species. Amplicon sequence variants (ASVs) of Pseudomonas, Corynebacterium, Clostridium, Ignatzschineria, Bacteroides, Streptococcus, Treponema and Dietzia showed strong co-occurrence with multiple ARGs. This study contributes to the understanding of the role of dipterans as reservoirs of antibiotic resistance.202541046045
3203170.9300Intestinal microbiota and high-risk antibiotic resistance genes in wild birds with varied ecological traits: Insights from opportunistic direct sampling in Tianjin, China. Within One Health framework, the dissemination of antibiotic resistance genes (ARGs) and pathogenic bacteria by wild birds has attracted increasing attention. In this study, gut samples of wild birds opportunistically collected in Tianjin, China, situated along the East Asian-Australasian Flyway, were used to ascertain the realistic distribution of bacteria and ARGs in their intestinal tracts. These birds have different dietary habits (herbivore, carnivore, and omnivore) and residency statuses (resident and migratory birds). Using 16S rRNA gene sequencing and qPCR, we analyzed microbial communities and the abundance of high-risk ARGs and mobile genetic elements (MGEs). Birds with distinct ecological traits exhibited significant variations in gut bacterial composition, yet similar microbial diversity. Shigella sp. emerged as the core intestinal pathogen, with a mean relative abundance 2.57 to 1466 times higher than that of other pathogenic bacteria, and its concentration correlated with the host's trophic level as indicated by the δ(15)N values. The distribution of ARGs and MGEs also varied with bird ecological traits. All 10 targeted high-risk ARGs were detected in carnivores or passage migrants, while migratory birds carried significantly greater abundance of intI1 than residents (p < 0.05). The potential of migratory birds to harbor and disseminate pathogenic bacteria and ARGs cannot be ignored. Network analysis revealed bla(TEM-1) presence in multiple core microorganisms, positively associated with Clostridioides difficile, emphasizing its risk potential. Positive dfrA12-intI1 correlation across trophic levels suggests potential for intI1-mediated transmission. Our study underscores the high potential risk posed by wild birds in carrying ARGs and pathogenic microorganisms, emphasizing the importance of further research and surveillance in this field.202439305975
6384180.9300Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data. Coastal tidal flats are intersection zones between terrestrial and marine environments and are considered repositories of pollutants from anthropogenic activities (e.g., fishery and aquaculture). Specifically, the prevalence of antibiotics and antibiotic resistance genes (ARGs) in coastal aquaculture environments pose critical threats to estuarine ecosystems. However, the contribution of aquaculture to the occurrence and abundance of ARGs and community assemblies has not been fully explored in tidal flat zones. Thus, we investigated ARGs profiles, ARG-carrying host bacteria, and their associate microbial community in the Dongtai and Sheyang tidal flat aquaculture regions of Jiangsu, China using metagenomic assembly methods. The antibiotic concentrations in the sediment samples ranged from nd to 35.50 ng/g dw, and the antibiotic pollution in the Dongtai tidal flat was more severe than in the Sheyang tidal flats. Metagenomic assembly indicated that a total of 247 ARG subtypes associated with ARG 33 types were characterized across all samples and their abundance in the Dongtai region exceeded that in the Sheyang region. Meanwhile, 21 bacteria in the tidal flat aquaculture were identified as ARG-carrying pathogens, including Escherichia coli, Vibrio fluvialis, and Staphylococcus aureus. Using neutral and null modeling analysis to determine the community ecological processes, the results revealed bacterial and ARG communities were generally dominated by stochastic and deterministic processes, respectively. The above results suggested that aquaculture pollution was contributed to shape ARG profiles in tidal flats. The observed deterministic processes affecting the ARG community in tidal flat aquaculture also provides an effective foundation to control the risks of environmental antibiotic resistance through reducing aquaculture antibiotic usage.202235421458
6127190.9300Paenibacillus associated with milky disease in Central and South American scarabs. Thirty-one isolates of bacteria causing milky disease in scarab larvae collected in Central and South America were identified as Paenibacillus popilliae or Paenibacillus lentimorbus by use of DNA similarity analysis. The isolates were more similar to each other than to the North American isolates that are the type strains of the species. All of the bacteria of both species produced parasporal bodies, a characteristic previously believed to be unique to P. popilliae. Screening of the bacteria using PCR with parasporal protein primers revealed differences among the parasporal protein genes of P. popilliae isolates and between the parasporal genes of P. popilliae and P. lentimorbus. In contrast to P. popilliae from North America, none of the isolates from Central and South America was resistant to vancomycin, an indication of an interesting geographic distribution of the resistance genes.200011023744