# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 12 | 0 | 0.9772 | A Diketopiperazine, Cyclo-(L-Pro-L-Ile), Derived From Bacillus thuringiensis JCK-1233 Controls Pine Wilt Disease by Elicitation of Moderate Hypersensitive Reaction. Pine wilt disease (PWD) caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus is one of the devastating diseases affecting pine forests worldwide. Although effective control measurements are still missing, induction of resistance could represent a possible eco-friendly alternative. In this study, induced resistance-based in vitro and in vivo screening tests were carried out for selection of bacteria with the ability to suppress PWD. Out of 504 isolated bacteria, Bacillus thuringiensis JCK-1233 was selected for its ability to boost pathogenesis-related 1 (PR1) gene expression, a marker of systemic acquired resistance. Moreover, treatment of pine seedlings with B. thuringiensis JCK-1233 resulted in increased expression of other defense-related genes, and significantly inhibited PWD development under greenhouse conditions. However, B. thuringiensis JCK-1233 showed no direct nematicidal activity against B. xylophilus. To identify the effective compound responsible for the induction of resistance in B. thuringiensis JCK-1233, several diketopiperazines (DPKs) including cyclo-(D-Pro-L-Val), cyclo-(L-Pro-L-Ile), cyclo-(L-Pro-L-Phe), and cyclo-(L-Leu-L-Val) were isolated and tested. Foliar treatment of pine seedlings with Cyclo-(L-Pro-L-Ile) resulted in suppression of PWD severity and increased the expression of defense-related genes similarly to B. thuringiensis JCK-1233 treatment. Interestingly, treatment with B. thuringiensis JCK-1233 or cyclo-(L-Pro-L-Ile) showed moderately enhanced expression of PR-1, PR-2, PR-3, PR-4, PR-5, and PR-9 genes following inoculation with PWN compared to that in the untreated control, indicating that they mitigated the burst of hypersensitive reaction in susceptible pine seedlings. In contrast, they significantly increased the expression levels of PR-6 and PR-10 before PWN inoculation. In conclusion, foliar spraying with either B. thuringiensis JCK-1233 culture suspension or DPKs could induce resistance in pine seedlings, thereby alleviating the serious damage by PWD. Taken together, this study supports aerial spraying with eco-friendly biotic or abiotic agents as a valuable strategy that may mark an epoch for the control of PWD in pine forests. | 2020 | 32849672 |
| 22 | 1 | 0.9772 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |
| 38 | 2 | 0.9759 | Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture. | 2019 | 31521273 |
| 47 | 3 | 0.9758 | LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. | 2016 | 26123657 |
| 8721 | 4 | 0.9758 | Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. OBJECTIVE: Serratia sp. S2 is a wild strain with chromium resistance and reduction ability. Chromium(VI) metabolic-protein-coding gene ChrA and ChrT were cloned from Serratia sp. S2, and ligated with prokaryotic expression vectors pET-28a (+) and transformed into E. coli BL21 to construct ChrA, ChrT and ChrAT engineered bacteria. By studying the characteristics of Cr(VI) metabolism in engineered bacteria, the function and mechanism of the sole expression and coexpression of ChrA and ChrT genes were studied. METHODS: Using Serratia sp. S2 genome as template, ChrA and ChrT genes were amplified by PCR, and prokaryotic expression vectors was ligated to form the recombinant plasmid pET-28a (+)-ChrA, pET-28a (+)-ChrT and pET-28a (+)-ChrAT, and transformed into E. coli BL21 to construct ChrA, ChrT, ChrAT engineered bacteria. The growth curve, tolerance, and reduction of Cr(VI), the distribution of intracellular and extracellular Cr, activity of chromium reductase and intracellular oxidative stress in engineered bacteria were measured to explore the metabolic characteristics of Cr(VI) in ChrA, ChrT, ChrAT engineered bacteria. RESULTS: ChrA, ChrT and ChrAT engineered bacteria were successfully constructed by gene recombination technology. The tolerance to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrA > ChrT > Control (P < 0.05), and the reduction ability to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrT > ChrA (P < 0.05). The chromium distribution experiments confirmed that Cr(VI) and Cr(III) were the main valence states. Effect of electron donors on chromium reductase activity was NADPH > NADH > non-NAD(P)H (P < 0.05). The activity of chromium reductase increased significantly with NAD(P)H (P < 0.05). The Glutathione and NPSH (Non-protein Sulfhydryl) levels of ChrA, ChrAT engineered bacteria increased significantly (P < 0.05) under the condition of Cr(VI), but there was no significant difference in the indexes of ChrT engineered bacteria (P > 0.05). CONCLUSION: ChrAT engineered bacteria possesses resistance and reduction abilities of Cr(VI). ChrA protein endows the strain with the ability to resist Cr(VI). ChrT protein reduces Cr(VI) to Cr(III) by using NAD(P)H as electronic donor. The reduction process promotes the production of GSH, GSSG and NPSH to maintain the intracellular reduction state, which further improves the Cr(VI) tolerance and reduction ability of ChrAT engineered bacteria. | 2020 | 32768747 |
| 8195 | 5 | 0.9755 | Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance. | 2021 | 33035671 |
| 18 | 6 | 0.9753 | Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial. | 2024 | 38336608 |
| 8782 | 7 | 0.9751 | Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum (RS) is a serious threat for agricultural production. In this study, Bacillus amyloliquefaciens strains CM-2 and T-5 antagonistic to RS were used to create bioorganic fertilisers to control tomato wilt under greenhouse conditions. The possible mechanism of resistance inducement by the antagonistic bacteria was also evaluated. RESULTS: The application of bioorganic fertilisers significantly reduced incidences of tomato wilt (by 63-74%), promoted plant growth and significantly reduced the RS populations in rhizosphere compared with the control. Both strains CM-2 and T-5 applied with bioorganic fertilisers survived well in the tomato rhizosphere. Tomato seedlings treated with cell suspension of T-5 followed by challenge inoculation with RS increased the activities of polyphenol oxidase, phenylalanine ammonia lyase and peroxidase compared with the untreated control. Furthermore, the expressions of the marker genes responsible for synthesis of phytohormones salicylic acid, ethylene and jasmonic acid in seedlings treated with T-5 in response to inoculated pathogen were significantly higher. CONCLUSIONS: This study suggests that strains CM-2 and T-5 containing bioorganic fertilisers effectively control tomato wilt. Increased enzyme activities and expression of defence genes in plants indicated that the antagonistic bacteria induced plant resistance, which was the potential biocontrol mechanism of tomato wilt. | 2013 | 23519834 |
| 8725 | 8 | 0.9751 | CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. BACKGROUND: Fusarium root rot is a widespread soil-borne disease severely impacting soybean yield and quality. Compared to traditional fertilizers' biological and environmental toxicity, CuO nanoparticles (NPs) hold promise for disease control in a low dose and high efficiency manner. METHODS: We conducted both greenhouse and field experiments, employing enzymatic assays, elemental analysis, qRT-PCR, and microbial sequencing (16S rRNA, ITS) to explore the potential of CuO NPs for sustainable controlling Fusarium-induced soybean disease. RESULTS: Greenhouse experiments showed that foliar spraying of CuO NPs (10, 100, and 500 mg L(-1)) promoted soybean growth more effectively than EDTA-CuNa(2) at the same dose, though 500 CuO NPs caused mild phytotoxicity. CuO NPs effectively controlled root rot, while EDTA-CuNa(2) worsened the disease severity by 0.85-34.04 %. CuO NPs exhibited more substantial antimicrobial effects, inhibiting F. oxysporum mycelial growth and spore germination by 5.04-17.55 % and 10.24-14.41 %, respectively. 100 mg L(-1) CuO NPs was the optimal concentration for balancing soybean growth and disease resistance. Additionally, CuO NPs boosted antioxidant enzyme activity (CAT, POD, and SOD) in leaves and roots, aiding in ROS clearance during pathogen invasion. Compared to the pathogen control, 100 mg L(-1) CuO NPs upregulated the relative expression of seven isoflavone-related genes (Gm4CL, GmCHS8, GmCHR, GmCHI1a, GmIFS1, GmUGT1, and GmMYB176) by 1.18-4.51 fold, thereby enhancing soybean disease resistance in place of progesterone-receptor (PR) genes. Field trials revealed that CuO NPs' high leaf-to-root translocation modulated soybean rhizosphere microecology. Compared to the pathogen control, 100 mg L(-1) CuO NPs increased nitrogen-fixing bacteria (Rhizobium, Azospirillum, Azotobacter) and restored disease-resistant bacteria (Pseudomonas, Burkholderia) and fungi (Trichoderma, Penicillium) to healthy levels. Furthermore, 100 mg L(-1) CuO NPs increased beneficial bacteria (Pedosphaeraceae, Xanthobacteraceae, SCI84, etc.) and fungi (Trichoderma, Curvularia, Hypocreales, etc.), which negatively correlated with F. oxysporum, while recruiting functional microbes to enhance soybean yield. CONCLUSION: 100 mg L(-1) CuO NPs effectively promoting soybean growth and providing strong resistance against root rot disease by improving antioxidant enzyme activity, regulating the relative expression of isoflavone-related genes, increasing beneficial bacteria and fungi and restoring disease-resistant. Our findings suggest that CuO NPs offer an environmentally sustainable strategy for managing soybean disease, with great potential for green production. | 2025 | 40096759 |
| 8767 | 9 | 0.9750 | Poly-γ-glutamic acid enhanced the drought resistance of maize by improving photosynthesis and affecting the rhizosphere microbial community. BACKGROUND: Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS: In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS: Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community. | 2022 | 34979944 |
| 8754 | 10 | 0.9749 | Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes. | 2024 | 38593377 |
| 37 | 11 | 0.9748 | N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. Many Gram-negative bacteria use small signal molecules, such as N-acyl-homoserine lactones (AHLs), to communicate with each other and coordinate their collective behaviors. Recently, increasing evidence has demonstrated that long-chained quorum-sensing signals play roles in priming defense responses in plants. Our previous work indicated that a short-chained signal, N-3-oxo-octanoyl homoserine lactone (3OC8-HSL), enhanced Arabidopsis resistance to the hemi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 through priming the salicylic acid (SA) pathway. Here, we found that 3OC8-HSL could also prime resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) through the jasmonic acid (JA) pathway, and is dependent on auxin responses, in both Chinese cabbage and Arabidopsis. The subsequent Pcc invasion triggered JA accumulation and increased the down-stream genes' expressions of JA synthesis genes (LOX, AOS, and AOC) and JA response genes (PDF1.2 and VSP2). The primed state was not observed in the Arabidopsis coi1-1 and jar1-1 mutants, which indicated that the primed resistance to Pcc was dependent on the JA pathway. The 3OC8-HSL was not transmitted from roots to leaves and it induced indoleacetic acid (IAA) accumulation and the DR5 and SAUR auxin-responsive genes' expressions in seedlings. When Arabidopsis and Chinese cabbage roots were pretreated with exogenous IAA (10 μM), the plants had activated the JA pathway and enhanced resistance to Pcc, which implied that the JA pathway was involved in AHL priming by coordinating with the auxin pathway. Our findings provide a new strategy for the prevention and control of soft rot in Chinese cabbage and provide theoretical support for the use of the quorum-sensing AHL signal molecule as a new elicitor. | 2022 | 35774826 |
| 14 | 12 | 0.9747 | Unraveling Pinus massoniana's Defense Mechanisms Against Bursaphelenchus xylophilus Under Aseptic Conditions: A Transcriptomic Analysis. Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and significantly impacts pine forest ecosystems globally. This study focuses on Pinus massoniana, an important timber and oleoresin resource in China, which is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors such as bacteria, fungi, and environment, we established a reciprocal system between PWN and P. massoniana seedlings under aseptic conditions. Utilizing combined second- and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 h postinfection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in P. massoniana's response to PWN. This comprehensive transcriptome profiling offers insights into P. massoniana's intricate defense strategies against PWN under aseptic conditions, laying a foundation for future functional analyses of key resistance genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license. | 2024 | 39283201 |
| 738 | 13 | 0.9746 | Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Environmental bacteria are exposed to a myriad of biotic interactions that influence their function and survival. The grazing activity of protozoan predators significantly impacts the dynamics, diversification, and evolution of bacterial communities in soil ecosystems. To evade protozoan predation, bacteria employ various defense strategies. Soil-dwelling Pseudomonas fluorescens strains SS101 and SBW25 produce the cyclic lipopeptide surfactants (CLPs) massetolide and viscosin, respectively, in a quorum-sensing-independent manner. In this study, CLP production was shown to protect these bacteria from protozoan predation as, compared to CLP-deficient mutants, strains SS101 and SBW25 exhibited resistance to grazing by Naegleria americana in vitro and superior persistence in soil in the presence of this bacterial predator. In the wheat rhizosphere, CLP-producing strains had a direct deleterious impact on the survival of N. americana. In vitro assays further showed that N. americana was three times more sensitive to viscosin than to massetolide and that exposure of strain SS101 or SBW25 to this protozoan resulted in upregulation of CLP biosynthesis genes. Enhanced expression of the massABC and viscABC genes did not require physical contact between the two organisms as gene expression levels were up to threefold higher in bacterial cells harvested 1 cm from feeding protozoans than in cells collected 4 cm from feeding protozoans. These findings document a new natural function of CLPs and highlight that bacterium-protozoan interactions can result in activation of an antipredator response in prey populations. | 2009 | 19717630 |
| 6017 | 14 | 0.9746 | Selection of lactic acid bacteria to promote an efficient silage fermentation capable of inhibiting the activity of Aspergillus parasiticus and Fusarium gramineraum and mycotoxin production. AIMS: To select lactic acid bacteria with potential silage inoculant properties. The bio-control activity against mycotoxicogenic fungi and the presence of antibiotics resistance gene were also evaluated. METHODS AND RESULTS: Lactobacillus rhamnosus RC007 and Lactobacillus plantarum RC009 were selected on the basis of growth rate and efficacy in reducing the pH of maize extract medium; therefore, they were evaluated for their bio-control ability against Fusarium graminearum and Aspergillus parasiticus. Studies on lag phase, growth rate and aflatoxin B1 (AFB1) and zearalenone (ZEA) production were carried out in vitro under different regimes of aw (0·95 and 0·99); pH (4 and 6); temperature (25 and 37°C); and oxygen availability (normal and reduced). Lactobacillus rhamnosus RC007 was able to completely inhibit the F. graminearum growth at all assayed conditions, while Lact. plantarum RC009 only did it at pH 4. Both Lactobacillus strains were able to significantly reduce the A. parasiticus growth rate mainly at 0·99 aw . A decrease in ZEA production was observed as result of Lactobacillus strains -F. graminearum interaction; however, the A. parasiticus- Lact. plantarum interaction resulted in an increased AFB1 production. Lactobacillus rhamnosus RC007 proved to have no genes for resistance to the tested antibiotics. CONCLUSIONS: The ability of Lact. rhamnosus RC007 to rapidly drop the pH and to inhibit fungal growth and mycotoxin production and the absence of antibiotic resistance genes shows the potential of its application as inoculant and bio-control agent in animal feed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the importance of selecting bacteria for silage inoculants not only for the improvement of silage fermentation but also for their effects on mycotoxicogenic fungi and the resulting mycotoxin production due to the risk that they may involve. | 2013 | 23437822 |
| 8194 | 15 | 0.9746 | Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis. The triggering of antibiotic production by various environmental stress molecules can be interpreted as bacteria's response to obtain increased fitness to putative danger, whereas the opposite situation - inhibition of antibiotic production - is more complicated to understand. Phenazines enable Pseudomonas species to eliminate competitors for rhizosphere colonization and are typical virulence factors used for model studies. In the present work, we have investigated the negative effect of subinhibitory concentrations of NaCl, fusaric acid and two antibiotics on quorum-sensing-controlled phenazine production by Pseudomonas chlororaphis. The selected stress factors inhibit phenazine synthesis despite sufficient cell density. Subsequently, we have identified connections between known genes of the phenazine-inducing cascade, including PsrA (Pseudomonas sigma regulator), RpoS (alternative sigma factor), Pip (phenazine inducing protein) and PhzI/PhzR (quorum-sensing system). Under all tested conditions, overexpression of Pip or PhzR restored phenazine production while overexpression of PsrA or RpoS did not. This forced restoration of phenazine production in strains overexpressing regulatory genes pip and phzR significantly impairs growth and stress resistance; this is particularly severe with pip overexpression. We suggest a novel physiological explanation for the inhibition of phenazine virulence factors in pseudomonas species responding to toxic compounds. We propose that switching off phenazine-1-carboxamide (PCN) synthesis by attenuating pip expression would favour processes required for survival. In our model, this 'decision' point for promoting PCN production or stress resistance is located downstream of rpoS and just above pip. However, a test with the stress factor rifampicin shows no significant inhibition of Pip production, suggesting that stress factors may also target other and so far unknown protagonists of the PCN signalling cascade. | 2011 | 21030433 |
| 15 | 16 | 0.9746 | Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii. Bacterial wilt (BW) caused by Ralstonia solanacearum is responsible for substantial losses in cultivated potato (Solanum tuberosum) crops worldwide. Resistance genes have been identified in wild species; however, introduction of these through classical breeding has achieved only partial resistance, which has been linked to poor agronomic performance. The Arabidopsis thaliana (At) pattern recognition receptor elongation factor-Tu (EF-Tu) receptor (EFR) recognizes the bacterial pathogen-associated molecular pattern EF-Tu (and its derived peptide elf18) to confer anti-bacterial immunity. Previous work has shown that transfer of AtEFR into tomato confers increased resistance to R. solanacearum. Here, we evaluated whether the transgenic expression of AtEFR would similarly increase BW resistance in a commercial potato line (INIA Iporá), as well as in a breeding potato line (09509.6) in which quantitative resistance has been introgressed from the wild potato relative Solanum commersonii. Resistance to R. solanacearum was evaluated by damaged root inoculation under controlled conditions. Both INIA Iporá and 09509.6 potato lines expressing AtEFR showed greater resistance to R. solanacearum, with no detectable bacteria in tubers evaluated by multiplex-PCR and plate counting. Notably, AtEFR expression and the introgression of quantitative resistance from S. commersonii had a significant additive effect in 09509.6-AtEFR lines. These results show that the combination of heterologous expression of AtEFR with quantitative resistance introgressed from wild relatives is a promising strategy to develop BW resistance in potato. | 2017 | 29033958 |
| 8803 | 17 | 0.9745 | Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms. | 2024 | 38852716 |
| 13 | 18 | 0.9745 | Streptomyces sp. JCK-6131 Protects Plants Against Bacterial and Fungal Diseases via Two Mechanisms. Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31-10% and 0.31-1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance. | 2021 | 34603354 |
| 6368 | 19 | 0.9745 | Antibacterial effects of curcumin encapsulated in nanoparticles on clinical isolates of Pseudomonas aeruginosa through downregulation of efflux pumps. Curcumin as a flavonoid from the rhizome of Curcuma longa has antibacterial, antiviral and antifungal activity. Multidrug resistance in pathogenic bacteria is continuously increasing in hospitals. The aim of this study was to investigate the effect of curcumin encapsulated in micellar/polymersome nanoparticles as an efflux pump inhibitor (EPI) on the expression of mexX and oprM genes in curcumin-treated and -untreated isolates of Pseudomonas aeruginosa. Clinical isolates of Pseudomonas aeruginosa were treated with ciprofloxacin (sub-MICs) alone and/or in combination with curcumin-encapsulated in micellar/polymersome nanoparticles. The expression of mexX and oprM genes was quantitatively evaluated by qRT-PCR in curcumin-treated and -untreated bacteria after 24 h. Curcumin-encapsulated in nanoparticles (400 µg/mL) induced cell death up to 50% in ciprofloxacin-treated (1/2MIC) resistant isolates during 24 h, while the bacteria treated with ciprofloxacin (without curcumin) were not inhibited. Also, curcumin in different concentrations increased effect of ciprofloxacin (sub-MICs). Downregulation of mexX and oprM genes was observed in cells treated with curcumin and ciprofloxacin compared to cells treated with ciprofloxacin alone. It seems that curcumin can be used as complementary drug in ciprofloxacin-resistant isolates through downregulating genes involved in efflux pumps and trapping ciprofloxacin on bacterial cells and increasing the effects of drug. | 2019 | 30778922 |