# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3013 | 0 | 0.9979 | Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. OBJECTIVES: The multiresistance plasmid pSCFS1 from Staphylococcus sciuri was sequenced completely and analysed with regard to its gene organization and the putative role of a novel ABC transporter in antimicrobial resistance. METHODS: Plasmid pSCFS1 was transformed into Staphylococcus aureus RN4220, overlapping restriction fragments were cloned into Escherichia coli plasmid vectors and sequenced. For further analysis of the ABC transporter, a approximately 3 kb EcoRV-HpaI fragment was cloned into the staphylococcal plasmid pT181MCS and the respective S. aureus RN4220 transformants were subjected to MIC determination. RESULTS: A total of 14 ORFs coding for proteins of >100 amino acids were detected within the 17 108 bp sequence of pSCFS1. Five of them showed similarity to recombination/mobilization genes while another two were similar to plasmid replication genes. In addition to the previously described genes cfr for chloramphenicol/florfenicol resistance and erm(33) for inducible resistance to macrolide-lincosamide-streptogramin B resistance, a Tn554-like spectinomycin resistance gene and Tn554-related transposase genes were identified. Moreover, a novel ABC transporter was detected and shown to mediate low-level lincosamide resistance. CONCLUSION: Plasmid pSCFS1 is composed of various parts which show similarity to sequences known to occur on plasmids or transposons of Gram-positive, but also Gram-negative bacteria. It is likely that pSCFS1 represents the result of inter-plasmid recombination events also involving the truncation of a Tn554-like transposon. | 2004 | 15471995 |
| 364 | 1 | 0.9976 | Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. A cluster of genes involved in antibiotic and heavy metal resistance has been characterized from a clinical isolate of the gram-negative bacterium Stenotrophomonas maltophilia. These genes include a macrolide phosphotransferase (mphBM) and a cadmium efflux determinant (cadA), together with the gene cadC coding for its transcriptional regulator. The cadC cadA region is flanked by a truncated IS257 sequence and a region coding for a bin3 invertase. Despite their presence in a gram-negative bacterium, these genetic elements share a common gram-positive origin. The possible origin of these determinants as a remnant composite transposon as well as the role of gene transfer between gram-positive and gram-negative bacteria for the acquisition of antibiotic resistance determinants in chronic, mixed infections is discussed. | 2000 | 10858330 |
| 819 | 2 | 0.9974 | Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE. | 1989 | 2548057 |
| 456 | 3 | 0.9974 | Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. The topoisomerase IV parC and parE genes from the wall-less organism Mycoplasma hominis PG21 were cloned and sequenced. The coupled genes are located far from the DNA gyrase genes gyrA and gyrB. They encode proteins of 639 and 866 amino acids, respectively. As expected, the encoded ParE and ParC proteins exhibit higher homologies with the topoisomerase IV subunits of the gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae than with their Escherichia coli counterparts. The conserved regions include the Tyr residue of the active site and the region involved in quinolone resistance (quinolone resistance-determining region [QRDR]) in ParC and the ATP-binding site and the QRDR in ParE. | 1998 | 9687401 |
| 428 | 4 | 0.9974 | Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria. Copy numbers of pLS1 were 24, 4 and 4 molecules per genome in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli, respectively. Replication of the streptococcal plasmids in E. coli required functional polA and recA genes. A copy-number mutation corresponding to a 332 base-pair deletion of pLS1 doubled the plasmid copy number in all three species. Determination of the complete DNA sequence of pLS1 revealed transcriptional and translational signals and four open reading frames. A putative inhibitory RNA was encoded in the region deleted by the copy-control mutation. Two putative mRNA transcripts encoded proteins for replication functions and tetracycline resistance, respectively. The repB gene encoded a trans-acting, 23,000 Mr protein necessary for replication, and the tet gene encoded a very hydrophobic, 50,000 Mr protein required for tetracycline resistance. The polypeptides corresponding to these proteins were identified by specific labeling of plasmid-encoded products. The tet gene of pLS1 was highly homologous to tet genes in two other plasmids of Gram-positive origin but different in both sequence and mode of regulation from tet genes of Gram-negative origin. | 1986 | 2438417 |
| 439 | 5 | 0.9972 | Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Acinetobacter baumannii 19606 harbors pMAC, a 9540-bp plasmid that contains 11 predicted open-reading frames (ORFs). Cloning and transformation experiments using Acinetobacter calcoaceticus BD413 mapped replication functions within a region containing four 21-bp direct repeats (ori) and ORF 1, which codes for a predicted replication protein. Subcloning and tri-parental mating experiments mapped mobilization functions to the product of ORF 11 and an adjacent predicted oriT. Three ORFs code for proteins that share similarity to hypothetical proteins encoded by plasmid genes found in other bacteria, while the predicted products of three others do not match any known sequence. The product of ORF 8 is similar to Ohr, a hydroperoxide reductase responsible for organic peroxide detoxification and resistance in bacteria. This ORF is immediately upstream of a coding region whose product is related to the MarR family of transcriptional regulators. Disk diffusion assays showed that A. baumannii 19606 is resistant to the organic peroxide-generating compounds cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (t-BHP), although to levels lower than those detected in Pseudomonas aeruginosa PAO1. Cloning and introduction of the ohr and marR ORFs into Escherichia coli was associated with an increase in resistance to CHP and t-BHP. This appears to be the first case in which the genetic determinants involved in organic peroxide resistance are located in an extrachromosomal element, a situation that can facilitate the horizontal transfer of genetic elements coding for a function that protects bacterial cells from oxidative damage. | 2006 | 16530832 |
| 4491 | 6 | 0.9972 | Genome comparison analysis of molecular mechanisms of resistance to antibiotics in the Rickettsia genus. In this study we describe molecular mechanisms of resistance to several classes of antibiotics within drug targets by in silico genome comparisons for bacteria of the genus Rickettsia. Apart from the mutations in the rpoB gene in naturally rifampin-resistant Rickettsia species previously reported by our team, we found that typhus group (TG) rickettsiae had a triple amino acid difference in the highly conserved region of the L22 ribosomal protein as compared to the spotted fever group rickettsiae (SFG), which could explain the natural resistance of SFG rickettsia to erythromycin. We found also that the genome of R. conorii contains an aminoglycoside 3'-phosphotransferase. Finally, either folA gene (encoding dihydrofolate reductase) and/or folP gene (encoding dihydropteroate synthase) was missing in the genome of rickettsial strains explaining the natural resistance to cotrimoxazole. Finally, multiple genes encoding for pump efflux were found especially in the genome of R. conorii that could be involved in resistance to antibiotics. Five specific ORFs related to antibiotic resistance have been identified in the genome of R. felis including a streptomycin resistance protein homologue, a class C beta-lactamase, a class D beta-lactamase, a penicillin acylase homologue, and an ABC-type multidrug transporter system. For the first time, using this approach, an experimental beta-lactamase activity has been shown for this bacterium. We believe that whole genome sequence analysis may help to predict several phenotypic characters, in particular resistance to antibiotics for obligate intracellular bacteria. | 2005 | 16481518 |
| 403 | 7 | 0.9971 | Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons. | 1987 | 3037534 |
| 3014 | 8 | 0.9971 | Complete sequence of the multi-resistance plasmid pV7037 from a porcine methicillin-resistant Staphylococcus aureus. The aim of this study was to determine the complete sequence of the multi-resistance plasmid pV7037 to gain insight into the structure and organization of this plasmid. Of the four XbaI clones of pV7037, one clone of 17,577 bp has already been sequenced and shown to carry a multi-resistance gene cluster. The remaining three clones of approximately 12.5, 6.5 and 4.5 kb were sequenced, the entire plasmid sequence correctly assembled and investigated for reading frames. In addition, two reading frames one coding for an ABC transporter and the other coding for an rRNA methylase were cloned and expressed in a S. aureus host to see whether they confer antimicrobial resistance properties. Plasmid pV7037 proved to be 40,971 bp in size. Besides the previously determined resistance gene cluster, it carried a functionally active tet(L) gene for tetracycline resistance, a complete cadDX operon for cadmium resistance and also a variant of the β-lactamase transposon Tn552. Two single bp deletions, which resulted in frame shifts, functionally deleted the genes for the BlaZ β-lactamase and the signal transducer protein BlaR1 in this Tn552 variant of pV7037. Plasmid pV7037 seems to be composed of various parts previously known from plasmids and transposons of staphylococci and other Gram-positive bacteria. However, there are also parts of the plasmid which do not show any homology to so far known sequences deposited in the databases. The novel ABC transporter and rRNA methylase genes identified on pV7037 do not seem to play a role in antimicrobial resistance. The co-location of numerous antimicrobial resistance genes bears the risk of co-transfer and co-selection of resistance genes, but also persistence of resistance genes even if no direct selective pressure by the use of the respective antimicrobial agents is applied. | 2013 | 23953027 |
| 404 | 9 | 0.9971 | Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA. | 1994 | 8188605 |
| 499 | 10 | 0.9971 | Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. Mycobacterium abscessus belongs to a group of rapidly growing mycobacteria (RGM) and accounts for approximately 65-80% of lung disease caused by RGM. It is highly pathogenic and is considered the prominent Mycobacterium involved in pulmonary infection in patients with cystic fibrosis and chronic pulmonary disease (CPD). FosM is a putative 134 amino acid fosfomycin resistance enzyme from M. abscessus subsp. bolletii that shares approximately 30-55% sequence identity with other vicinal oxygen chelate (VOC) fosfomycin resistance enzymes and represents the first of its type found in any Mycobacterium species. Genes encoding VOC fosfomycin resistance enzymes have been found in both Gram-positive and Gram-negative pathogens. Given that FosA enzymes from Gram-negative bacteria have evolved optimum activity towards glutathione (GSH) and FosB enzymes from Gram-positive bacteria have evolved optimum activity towards bacillithiol (BSH), it was originally suggested that FosM might represent a fourth class of enzyme that has evolved to utilize mycothiol (MSH). However, a sequence similarity network (SSN) analysis identifies FosM as a member of the FosX subfamily, indicating that it may utilize water as a substrate. Here we have synthesized MSH and characterized FosM with respect to divalent metal ion activation and nucleophile selectivity. Our results indicate that FosM is a Mn(2+)-dependent FosX-type hydrase with no selectivity toward MSH or other thiols as analyzed by NMR and mass spectroscopy. | 2019 | 32952996 |
| 490 | 11 | 0.9971 | Mercuric resistance genes in gram-positive oral bacteria. Mercury-resistant bacteria isolated from the oral cavities of children carried one of two types of merA gene that appear to have evolved from a common ancestor. Streptococcus oralis, Streptococcus mitis and a few other species had merA genes that were very similar to merA of Bacillus cereus strain RC607. Unlike the B. cereus RC607 merA gene, however, the streptococcal merA genes were not carried on Tn5084-like transposons. Instead, comparisons with microbial genomic sequences suggest the merA gene is located on a novel type II transposon. Coagulase-negative staphylococci and Streptococcus parasanguis had identical merA genes that represent a new merA variant. | 2004 | 15251199 |
| 491 | 12 | 0.9971 | Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. We have studied the mechanisms of the horizontal dissemination of a broad-spectrum mercury resistance determinant among Bacillus and related species. This mer determinant was first described in Bacillus cereus RC607 from Boston Harbor, USA, and was then found in various Bacillus and related species in Japan, Russia and England. We have shown that the mer determinant can either be located at the chromosome, or on a plasmid in the Bacillus species, and is carried by class II mercury resistance transposons: Tn5084 from B. cereus RC607 and B. cereus VKM684 (ATCC10702) and Tn5085 from Exiguobacterium sp. TC38-2b. Tn5085 is identical in nucleotide sequence to TnMERI1, the only other known mer transposon from Bacillus species, but it does not contain an intron like TnMERI1. Tn5085 is functionally active in Escherichia coli. Tn5083, which we have isolated from B. megaterium MK64-1, contains an RC607-like mer determinant, that has lost some mercury resistance genes and possesses a merA gene which is a novel sequence variant that has not been previously described. Tn5083 and Tn5084 are recombinants, and are comprised of fragments from several transposons including Tn5085, and a relative of a putative transposon from B. firmus (which contains similar genes to the cadmium resistance operon of Staphylococcus aureus), as well as others. The sequence data showed evidence for recombination both between transposition genes and between mer determinants. | 2001 | 11446519 |
| 402 | 13 | 0.9971 | The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. Antibiotic resistance in C. difficile by efflux has been previously suggested. The genome of C. difficile 630 was screened for sequences encoding putative proteins homologous to NorA from Staphylococcus aureus. Four ORFs homologous to efflux genes were cloned into the pAT79 shuttle vector under the control of transcription and translation signals of Gram-positive bacteria and expressed in Enterococcus faecalis JH2-2 and S. aureus RN4220. One of these sequences, designated cme conferred resistance to ethidium bromide, safranin O, and erythromycin in E. faecalis. The three other ORFs did not confer detectable resistance in both bacteria. | 2004 | 15336408 |
| 426 | 14 | 0.9970 | Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Resistance to the bactericidal activity of serum appears to be an important virulence property of invasive bacteria. The conjugative multiple-antibiotic-resistance plasmid R6-5 was found to confer upon Escherichia coli host bacteria increased resistance against rabbit serum. Gene-cloning techniques were used to localize the serum resistance determinant of R6-5 to a segment of the plasmid that encodes conjugal transfer functions, and a pACYC184 hybrid plasmid, designated pKT107, that contains this segment was constructed. The generation and analysis of deletion and insertion mutant derivatives of the pKT107 plasmid that no longer specify serum resistance permitted precise localization of the serum-resistance cistron on the R6-5 map and demonstrated that this locus is coincident with that of traT, one of the two surface exclusion genes of R6-5. Examination of the proteins synthesized in E. coli minicells of pKT107 and its serum-sensitive mutant derivative plasmids confirmed that the serum-resistance gene product of R6-5 is the traT protein and showed that this protein is a major structural component (about 21,000 copies per cell) of the bacterial outer membrane. | 1980 | 6995306 |
| 455 | 15 | 0.9970 | An inducible tellurite-resistance operon in Proteus mirabilis. Tellurite resistance (Te(r)) is widespread in nature and it is shown here that the natural resistance of Proteus mirabilis to tellurite is due to a chromosomally located orthologue of plasmid-borne ter genes found in enteric bacteria. The P. mirabilis ter locus (terZABCDE) was identified in a screen of Tn5lacZ-generated mutants of which one contained an insertion in terC. The P. mirabilis terC mutant displayed increased susceptibility to tellurite (Te(s)) and complementation with terC carried on a multicopy plasmid restored high-level Te(r). Primer extension analysis revealed a single transcriptional start site upstream of terZ, but only with RNA harvested from bacteria grown in the presence of tellurite. Northern blotting and reverse transcriptase-PCR (RT-PCR) analyses confirmed that the ter operon was inducible by tellurite and to a lesser extent by oxidative stress inducers such as hydrogen peroxide and methyl viologen (paraquat). Direct and inverted repeat sequences were identified in the ter promoter region as well as motifs upstream of the -35 hexamer that resembled OxyR-binding sequences. Finally, the 390 bp intergenic promoter region located between orf3 and terZ showed no DNA sequence identity with any other published ter sequences, whereas terZABCDE genes exhibited 73-85 % DNA sequence identity. The ter operon was present in all clinical isolates of P. mirabilis and Proteus vulgaris tested and is inferred for Morganella and Providencia spp. based on screening for high level Te(r) and preliminary PCR analysis. Thus, a chromosomally located inducible tellurite resistance operon appears to be a common feature of the genus Proteus. | 2003 | 12724390 |
| 431 | 16 | 0.9970 | Nucleotide sequence analysis of the complement resistance gene from plasmid R100. The multiple antibiotic resistance plasmid R100 renders Escherichia coli resistant to the bactericidal action of serum complement. We constructed a plasmid (pOW3) consisting of a 1,900-base-pair-long restriction fragment from R100 joined to a 2,900-base-pair-long fragment of pBR322 carrying ampicillin resistance. E. coli strains carrying pOW3 or R100 were up to 10,000-fold less sensitive to killing by serum complement than were plasmid-free bacteria or bacteria carrying pBR322. Nucleotide sequencing revealed that 875 of the 1,900 bases from R100 correspond exactly to part of the bacterial insertion sequence IS2. The remaining 1,075 bases contained only one sizeable open reading frame; it covered 729 base pairs (243 amino acids) and was preceded by nucleotide sequences characteristic of bacterial promoters and ribosome binding sites. The first 20 amino acids of the predicted protein showed features characteristic of a signal sequence. The remainder of the predicted protein showed an amino acid composition almost identical with that determined for the traT protein from the E. coli F factor. Southern blot analysis showed that the resistance gene from R100 does not hybridize to the serum resistance gene from ColV,I-K94 isolated by Binns et al.; we concluded that these genes are distinct. | 1982 | 6284713 |
| 429 | 17 | 0.9970 | An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. We have constructed and used an integrative vector, pAT112, that takes advantage of the transposition properties (integration and excision) of transposon Tn1545. This 4.9-kb plasmid is composed of: (i) the replication origin of pACYC184; (ii) the attachment site (att) of Tn1545; (iii) erythromycin-and kanamycin-resistance-encoding genes for selection in Gram- and Gram+ bacteria; and (iv) the transfer origin of IncP plasmid RK2, which allows mobilization of the vector from Escherichia coli to various Gram+ recipients. Integration of pAT112 requires the presence of the transposon-encoded integrase, Int-Tn, in the new host. This vector retains the insertion specificity of the parental element Tn1545 and utilises it to carry out insertional mutagenesis, as evaluated in Enterococcus faecalis. Since pAT112 contains the pACYC184 replicon and lacks most of the restriction sites that are commonly used for molecular cloning, a gene from a Gram+ bacterium disrupted with this vector can be recovered in E. coli by cleavage of genomic DNA, intramolecular ligation and transformation. Regeneration of the gene, by excision of pAT112, can be obtained in an E. coli strain expressing the excisionase and integrase of Tn1545. The functionality of this system was illustrated by characterization of an IS30-like structure in the chromosome of En. faecalis. Derivatives pAT113 and pAT114 contain ten unique cloning sites that allow screening of recombinants having DNA inserts by alpha-complementation in E. coli carrying the delta M15 deletion of lacZ alpha. These vectors are useful to clone and introduce foreign genes into the genomes of Gram+ bacteria. | 1991 | 1657722 |
| 3051 | 18 | 0.9970 | Nucleotide sequence of the bacterial streptothricin resistance gene sat3. The nucleotide sequence of the sat3 gene which encodes resistance of enteric bacteria to the antibiotic streptothricin is reported. A protein with a molecular mass of about 23 kDa is expressed from this gene. The sat3 gene is not obviously related to any one of the streptothricin resistance determinants identified so far among Gram-negative or Gram-positive bacteria. | 1995 | 7640311 |
| 820 | 19 | 0.9970 | Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria. | 1993 | 8380801 |