COCKROACHES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
237000.9808Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India. BACKGROUND: Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India. METHODS: Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods. RESULTS: Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04%) and Bl. germanica (35.96%). However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three. CONCLUSION: Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases.201425629061
356410.9798Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae). Cockroaches, insects of the order Blattodea, seem to play a crucial role in the possible conjugation-mediated genetic exchanges that occur among bacteria that harbor in the cockroach intestinal tract. The gut of these insects can be thought of as an effective in vivo model for the natural transfer of antimicrobial resistance plasmids among bacteria. In our study, we evaluated the conjugation-mediated horizontal transfer of resistance genes between Escherichia coli and other microorganisms of the same Enterobacteriaceae family within the intestinal tract of Blaberus craniifer Burmeister, 1838 (Blattodea: Blaberidae). Different in vivo mating experiments were performed using E. coli RP4 harboring the RP4 plasmid carrying ampicillin, kanamycin, and tetracycline resistance genes as the donor and E. coli K12 resistant to nalidixic acid or Salmonella enterica serovar Enteritidis IMM39 resistant to streptomycin as the recipients. The RP4 plasmid was successfully transferred to both recipients, producing E. coli K12-RP4 and S. Enteritidis IMM39-RP4 transconjugants. Conjugation frequencies in vivo were similar to those previously observed in vitro. The transfer of the RP4 plasmid in all transconjugants was confirmed by small-scale plasmid isolation and agar gel electrophoresis, suggesting that the intestinal tract of cockroaches is an effective in vivo model for natural gene transfer. Our results confirm that cockroaches allow for the exchange of antimicrobial resistance plasmids among bacteria and may represent a potential reservoir for the dissemination of antibiotic-resistant bacteria in different environments. These findings are particularly significant to human health in the context of health care settings such as hospitals.201626875189
520720.9797Complete genome sequences of bacteria isolated from cockroaches collected in a Bangladeshi hospital. We report the complete genome sequences of four bacterial strains that were isolated from Blattella germanica (German cockroaches) that were found in three wards of the Rajshahi Medical College Hospital. Multiple antibiotic resistance genes were identified in each genome, with one genome containing multiple plasmid-encoded resistance genes.202337606385
106530.9797Predominance of multi-drug resistant extended spectrum β lactamase producing bacteria from marine fishes. The present study aimed to determine the extended spectrum beta lactamase (ESBL) genes in the bacteria from fresh exportable fish samples collected along South east coast of India, Chennai. ESBL genes are the base for the antibiotic resistance in pathogens and it transmitted from one to other species. Totally 2670 isolates were isolated from 293 fish samples which belong to 31 species dominated by Aeromonas, Klebsiella, Serratia, Leclerica, Proteus, Enterobacter, Acinetobacter, Haemophilus, Escherichia, Shigella sp. Out of 2670 isolates, 1958 isolates have multi drug resistant capacity with ESBL genes of bla(CTX), bla(SHV), bla(TEM) and bla(AmpC) and 712 isolates are not detected ESBL genes. The present study revealed that, the contamination of fresh fish sample with pathogenic bacteria resistant to multiple antibiotics can incriminate seafood as a potential carrier and accentuate an immediate need to prevent environmental infectivity and distribution. Further, hygienic facilitated markets should be developed with ensured quality of seafood.202336813100
320240.9797Cockroach Microbiome Disrupts Indoor Environmental Microbial Ecology with Potential Public Health Implications. Cockroaches pose a significant global public health concern. However, besides the well-recognized cockroach-induced allergy, the potential impact of the cockroach microbiome on human health through various means is not yet fully elucidated. This study aimed to clarify the health impacts of cockroaches by investigating the microbial interactions among cockroaches, the indoor environment, and humans. We simultaneously collected cockroach, indoor environment (indoor air and floor dust), and human (exhaled breath condensate and skin) samples from residential areas in five cities representing distinct climate zones in China. The 16S rDNA sequencing results revealed that cockroaches harbor diverse bacterial populations that vary across different cities. The prevalence of potential pathogenic bacteria (PPB) in cockroaches ranged from 1.1% to 58.9%, with dominant resistance genes conferring resistance to tetracycline, macrolide, and beta-lactam. The relationships between the cockroach microbiome and the associated environmental and human microbiomes were explored by using fast expectation-maximization microbial source tracking (FEAST). The potential contribution of cockroach bacteria to the floor dust-borne microbiome and indoor airborne microbiome was estimated to be 5.6% and 1.3%, respectively. Similarly, the potential contribution of cockroach PPB to the floor dust-borne microbiome and indoor airborne microbiome was calculated to be 4.0% and 1.2%, respectively. In residences with cockroach infestations, the contribution of other sources to the indoor environment was slightly increased. Collectively, the role of cockroaches in the transmission of microorganisms, particularly pathogenic bacteria and antibiotic resistance genes, cannot be overlooked.202540270532
263050.9793Characterization of bla(NDM-5)-and bla(CTX-M-199)-Producing ST167 Escherichia coli Isolated from Shared Bikes. Shared bikes as a public transport provide convenience for short-distance travel. Whilst they also act as a potential vector for antimicrobial resistant (AR) bacteria and antimicrobial resistance genes (ARGs). However, the understanding of the whole genome sequence of AR strains and ARGs-carrying plasmids collected from shared bikes is still lacking. Here, we used the HiSeq platform to sequence and analyze 24 Escherichia coli isolated from shared bikes around Metro Stations in Beijing. The isolates from shared bikes showed 14 STs and various genotypes. Two blaNDM-5 and blaCTX-M-199-producing ST167 E. coli have 16 resistance genes, four plasmid types and show >95% of similarities in core genomes compared with the ST167 E. coli strains from different origins. The blaNDM-5- or blaCTX-M-199-carrying plasmids sequencing by Nanopore were compared to plasmids with blaNDM-5- or blaCTX-M-199 originated from humans and animals. These two ST167 E. coli show high similarities in core genomes and the plasmid profiles with strains from hospital inpatients and farm animals. Our study indicated that ST167 E. coli is retained in diverse environments and carried with various plasmids. The analysis of strains such as ST167 can provide useful information for preventing or controlling the spread of AR bacteria between animals, humans and environments.202236009901
172460.9792Isolation, Molecular Characterization, and Antimicrobial Resistance of Selected Culturable Bacteria From Crayfish (Procambarus clarkii). Red swamp crayfish (Procambarus clarkii) have become one of the favorite aquatic products in China. The modern farming mode which uses antibiotics to prevent diseases could impact the bacteria in crayfish intestines. Here, we determined the distribution and antimicrobial resistance phenotypes of the selected culturable bacteria in crayfish intestines and characterized an isolate with last-line antibiotic resistance determinant. Totally, 257 strains were isolated from 115 crayfish. These strains were highly diverse, with Citrobacter sp. (n = 94, 36.6%) and Aeromonas sp. (n = 88, 34.2%) being dominant. Other isolates belonged to genera Pseudomonas, Myroides, Morganella, Klebsiella, Acinetobacter, Proteus, Enterobacter, Kluyvera, and Escherichia. Most strains from crayfish were susceptible to all tested antibiotics. None of the isolates carried last-line antibiotic resistance genes except one Escherichia coli isolate with bla (NDM-5) was detected, which is the first report of bla (NDM-5)-positive E. coli isolate from red swamp crayfish. Whole-genome sequencing suggested it belonged to ST48 and carried several resistance genes. bla (NDM-5) was located within an Tn3000-like transposon linked to an external 5 bp sequence (ACTAT) on both sides on a IncHI1B/HI1A/FIA multi-replicon plasmid. This transposon was considered to be acquired by replicative transposition mediated by IS3000. The emergence of bacteria with last-line antibiotic resistance genes in crayfish poses serious threat to public health since crayfish could act as a reservoir for the transfer of resistance to humans.202235747368
195270.9791POTENTIAL RISKS OF THE SPREAD OF ANTIBIOTIC-RESISTANT MICROORGANISMS AND ANTIBIOTIC-RESISTANCE GENES IN POTABLE WATER - HUMAN ORGANISM CHAIN. OBJECTIVE: The aim: Determination of circulation interrelations between antibiotic-resistant microorganisms of Enterobacteriaceae family and their resistance genes in clinical strains and potable water samples taken in Uzhhorod and Uzhhorod district. PATIENTS AND METHODS: Materials and methods: We carried out generic identification of the microorganisms isolated from clinical samples of the oral cavity of 64 patients suffering from periodontal inflammatory diseases, and potable water samples taken from sources of public centralized and decentralized water supply; the isolated microorganisms were tested for antibiotic sensitivity by the Kirby-Bauer disc diffusion method according to EUCAST. With the help of molecular-genetic methods, the total DNA of potable water was isolated and tested for the presence of the following genetic resistance determinants: carbapenems blaNDM; blaOXA48-like; tetracyclines blaTet-M; cephalosporins blaCTX-M. RESULTS: Results: In the microbiota of the clinical material and potable water samples, the same spectrum of microorganisms belonging to Enterobacteriaceae family dominated; the isolated bacteria showed a high resistance level to beta-lactam antibiotics and to natural antibiotic preparations. The highest level of resistance was established for microorganisms isolated from well water samples, where genetic resistance determinants to blaCTX-M cephalosporins and blaTet tetracyclins were also revealed. CONCLUSION: Conclusions: The obtained results proved high probability of the spread of antibiotic-resistant microorganisms and their genetic resistance determinants via potable water.202235633330
559280.9790Antibiotic Resistance Profile of Rarely Isolated Salmonella Serotypes from Poultry in Turkey. This study investigated five strains of each serotype of Salmonella Agona, Salmonella Heidelberg, Salmonella Hindmarsh, Salmonella Kouka, Salmonella Muenchen, Salmonella Ottmarchen, Salmonella Saintpaul and Salmonella II, isolated during the 2014-2017 period. Disc diffusion was used to identify the phenotypic profiles of antibiotic resistance to 12 antimicrobials while the presence of antibiotic resistance genes (ARGs) was detected by PCR. The most sensitive serotype was S. Kouka while the most resistant serotypes were S. Agona and S. Heidelberg. MDR was detected most frequently in S. Agona strains, followed by S. Saintpaul, S. Hindmarsch, and S. Ottmarchen. The samples were most susceptible to chloramphenicol and ceftazidime and most resistant to sulfonamide. The resistance genes were detected in phenotypically resistant strains. Among the tetracycline-resistant strains, tet (A) was the most prevalent gene. The results of this study highlight the importance of monitoring antibiotic resistance profiles and related genes, which can spread to form MDR bacteria. Salmonella spp., which significantly contribute to ARG dissemination, should be monitored constantly to protect the closely related health of humans, animals, and the environment. The level of antibiotic resistance observed in this study, even in rarely isolated Salmonella serotypes, also indicates the need for careful and selective use of antibiotics.202338756027
260290.9790Human-wildlife ecological interactions shape Escherichia coli population and resistome in two sloth species from Costa Rica. Antimicrobial resistance (AMR) is a global health concern, with natural ecosystems acting as reservoirs for resistant bacteria. We assessed AMR in Escherichia coli isolated from two wild sloth species in Costa Rica. E. coli from two-toed sloths (Choloepus hoffmanni), a species with greater mobility and a broader diet, showed resistance to sulfamethoxazole (25%), tetracycline (9.4%), chloramphenicol (6.3%), ampicillin (6.3%), trimethoprim (3.1%), and ciprofloxacin (3.1%), which correlated with the presence of resistance genes (tet(A), tet(B), bla(TEM-1B), aph(3")-Id, aph(6)-Id, sul2, qnrS1, floR and dfrA8). E. coli from three-toed sloths (Bradypus variegatus) showed 40% resistance to sulfamethoxazole despite no detected resistance genes, suggesting a regional effect. A significant negative correlation was found between AMR and distance to human-populated areas, highlighting anthropogenic impact on AMR spread. Notably, E. coli isolates from remote areas with no human impact indicate that some ecosystems remain unaffected. Preserving these areas is essential to protect environmental and public health.202540610649
2618100.9790The profile of antibiotics resistance and integrons of extended-spectrum beta-lactamase producing thermotolerant coliforms isolated from the Yangtze River basin in Chongqing. The spreading of extended-spectrum beta-lactamases (ESBL)-producing thermotolerant coliforms (TC) in the water environment is a threat to human health but little is known about ESBL-producing TCs in the Yangtze River. We received 319 ESBL-producing stains obtained from the Chongqing basin and we investigated antibiotic susceptibility, bla gene types and the presence of integrons and gene cassettes. 16.8% of TC isolates were ESBL-producing bacteria and bla(TEM+CTx-M) was the predominant ESBL type. 65.2% of isolates contained class 1 integrons, but only 3 carried intI 2. Gene cassettes were amplified and sequenced. aadA, drfA, cmlA, sat1, aar3 and two ORF cassettes were found. In conclusion, Yangtze River is heavily polluted by ESBL-producing TC bacteria and the combined bla gene type could enhance antibiotic resistance. Class 1 integrons were widespread in ESBL-producing isolates and play an important role in multi-drug resistance. Characterization of gene cassettes could reveal the dissemination of antibiotic resistance genes.201020447743
1970110.9790Into the sea: Antimicrobial resistance determinants in the microbiota of little penguins (Eudyptula minor). Terrestrial and aquatic birds have been proposed as sentinels for the spread of antimicrobial resistant bacteria, but few species have been investigated specifically in the context of AMR in the marine ecosystem. This study contrasts the occurrence of class 1 integrons and associated antimicrobial resistance genes in wild and captive little penguins (Eudyptula minor), an Australian seabird with local population declines. PCR screening of faecal samples (n = 448) revealed a significant difference in the prevalence of class 1 integrons in wild and captive groups, 3.2% and 44.7% respectively, with genes that confer resistance to streptomycin, spectinomycin, trimethoprim and multidrug efflux pumps detected. Class 1 integrons were not detected in two clinically relevant bacterial species, Klebsiella pneumoniae or Escherichia coli, isolated from penguin faeces. The presence of class 1 integrons in the little penguin supports the use of marine birds as sentinels of AMR in marine environments.202133370595
1922120.9790A survey of antimicrobial resistance in Enterobacteriaceae isolated from the Chesapeake Bay and adjacent upper tributaries. In recent years, the rise in antimicrobial resistance (AR) in the healthcare setting as well as the environment has been recognized as a growing public health problem. The Chesapeake Bay (CB) and its upper tributaries (UT) is a large and biologically diverse estuary. This pilot study evaluated the presence of AR of gram-negative bacteria isolated from water samples collected at various sites of the Chesapeake Bay. Bacterial organisms were identified and antimicrobial susceptibility testing was performed by phenotypic and genotypic methods. Ninety-two distinctly different gram-negative bacteria were identified; Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Serratia marcescens, and Escherichia coli were most often isolated. Serratia marcescens was more frequently isolated in samples from the UT compared to the CB. Antimicrobial resistance was more frequently detected in organisms from the CB by phenotypic and genotypic methods. Antimicrobial resistance to ampicillin, imipenem, tetracycline, and chloramphenicol were the most frequently observed resistance patterns. ACT-1, CMY, and SHV genes were the most frequently detected resistance genes, with predominance in organism isolated from the CB. The results from this study emphasize the importance for further developing comprehensive surveillance programs of AR in bacterial isolates in the various environments, such as recreational and other water systems.201930950215
1586130.9790Iberian wolf as a reservoir of extended-spectrum β-lactamase-producing Escherichia coli of the TEM, SHV, and CTX-M groups. The intensive use of antibiotics in human and veterinary medicine, associated with mechanisms of bacterial genetic transfer, caused a selective pressure that contributed to the dissemination of antimicrobial resistance in different bacteria groups and throughout different ecosystems. Iberian wolf, due to his predatory and wild nature, may serve as an important indicator of environmental contamination with antimicrobial resistant bacteria. The aim of this study was to characterize the diversity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates within the fecal microbiota of Iberian wolf. Additionally, the identification of other associated resistance genes, phylogenetic groups, and the detection of virulence determinants were also focused on in this study. From 2008 to 2009, 237 fecal samples from Iberian wolf were collected in Portugal. E. coli isolates with TEM-52, SHV-12, CTX-M-1, and CTX-M-14-type ESBLs were detected in 13 of these samples (5.5%). This study reveals the presence of ESBL-producing E. coli isolates, in a wild ecosystem, which could be disseminated through the environment. Moreover, the presence of resistant genes in integrons and the existence of virulence determinants were shown. The association between antibiotic resistance and virulence determinants should be monitored, as it constitutes a serious public health problem.201222185366
1968140.9790Multidrug-resistant pattern of food borne illness associated bacteria isolated from cockroaches in meal serving facilities, Jimma, Ethiopia. INTRODUCTION: An increase in the emergence and spread of multidrug-resistant (MDR) bacteria in recent years is becoming worrisome. Domestic cockroaches can play a significant role in the dissemination of such bacteria between the environment and human beings. This study aimed at determining anti-microbial resistance pattern of food borne illness associated bacteria identified from cockroaches trapped in restaurants and cafeterias. METHODS: Trapped cockroaches were picked with surgical gloves, sealed in sterile plastic bags and transported to the Microbiology laboratory. Standard microbiological techniques were used to isolate and identify bacteria. Anti-microbial susceptibility testing was done using Kirby Bauer diffusion technique. RESULT: A total of five species of food borne illness associated bacteria were detected. Majority (57.1%) of the bacteria were isolated from the gut of cockroaches. More than 89% of the isolates were multi drug resistance (MDR). MDR was higher on gram positive bacteria. S. aureus showed 53.3% resistance against oxacillin(MRSA) and 33.3% against vancomycin. CONCLUSION: A very high percentage of MDR bacteria was seen in this study. Most of the bacteria tested were isolated from the gut of cockroaches. Potential factors associated with cockroaches that contributed to this high MDR rate of the isolates should be investigated in future.201829977255
5281150.9789Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes. Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the bla(TEM) gene, whereas 58.3% of isolates in meltwater possessed bla(TEM) and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and bla(TEM) (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.202438262510
3303160.9789Characterization of transferable antibiotic resistance plasmids in airborne particulate matter from ICU environments. Intensive care units (ICUs) are critical environments for the emergence of antibiotic-resistant bacteria, with numerous studies focusing on resistant pathogens in these settings. However, transferable antibiotic resistance plasmids (TARPs)-regardless of their origin from pathogenic or non-pathogenic bacteria-are key drivers of resistance gene dissemination and the emergence of resistant strains. This study investigated TARPs in ICU air. Air samples were directly used to isolate resistant plasmids using Escherichia coli CV601 as the recipient. Plasmid types, antibiotic resistance genes (ARGs), and virulence factors were identified through sequencing, and resistance phenotypes were validated. A total of 30 distinct plasmid types were detected, with IncX3 being the most prevalent. Among 245 ARGs identified, bla (NDM-53), bla (SHV-12), and BRP(MBL) were dominant. Phylogenetic analysis indicated that these TARPs originated from bacteria commonly colonizing human mucosa. ICU airborne TARPs may significantly contribute to the spread of ARGs and antibiotic resistance transmission.202540330890
2371170.9789Sewage from a secondary hospital in Ribeirão Preto, southeastern Brazil: a source of multidrug-resistant Enterobacteriaceae. Antimicrobial resistance is one of the severe threats to global health. Hospital sewage can serve as a reservoir for multi-resistant bacteria and promote the spread of antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility and the pathogenic potential of Enterobacteriaceae isolated from the sewage of a secondary hospital in Ribeirão Preto, a city in southeastern Brazil. The strains were isolated by membrane filtration and identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). The antimicrobial susceptibility profile was performed by disk diffusion. Polymerase chain reaction (PCR) assays were used to detect virulence genes among the strains. Twenty-eight isolates were obtained, with Klebsiella pneumoniae being the predominant species (71.4%, n = 20). All isolates were classified as multidrug-resistant, including four isolates that were non-susceptible to at least 50% of the tested antibiotics. All isolates were also non-susceptible to cefuroxime and sulfonamides antibiotics; however, they were susceptible to norfloxacin, ofloxacin, amikacin, gentamicin, netilmicin, ertapenem, cefazolin, cefaclor, and cefotetan. The virulence genes ycfM, fimH, mrkD, kfu, and entB were detected in several isolates. Our study showed that even in a secondary hospital, without the routine of major surgeries and intensive care admissions, the hospital sewage can harbor a high percentage of multidrug-resistant bacteria with pathogenic potential. This leads to the worrying risk of public health and environmental contamination.202236527506
2891180.9789Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Mediterranean herring gulls (Larus cachinnans) were investigated as a possible reservoir of antibiotic resistant bacteria and of cassette-borne resistance genes located in class 1 integrons. Two hundred and fourteen isolates of the family Enterobacteriaceae were collected from cloacal swabs of 92 chicks captured in a natural reserve in the North East of Italy. They showed high percentages of resistance to ampicillin and streptomycin. High percentages of resistance to trimethoprim/sulfamethoxazole were found in Proteus and Citrobacter and to chloramphenicol in Proteus. Twenty-two (10%) isolates carried the intI1 gene. Molecular characterization of the integron variable regions showed a great diversity, with the presence of 11 different cassette arrays and of one integron without integrated cassettes. The dfrA1-aadA1a and aadB-aadA2 cassette arrays were the most frequently detected. Also the estX cassette, alone or in combination with other cassettes, was detected in many isolates. From this study it is concluded that the enteric flora of Mediterranean herring gulls may act as a reservoir of resistant bacteria and of resistance genes. Due to their feeding habits and their ability to fly over long distances, these free-living birds may facilitate the circulation of resistant strains between waste-handling facilities, crops, waters, and urban areas.200818476779
1722190.9789Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. This study aimed to explore the relationship between wild birds and the transmission of multidrug-resistant strains. Klebsiella pneumoniae was isolated from fresh feces of captured wild birds and assessed by the broth microdilution method and comparative genomics. Four Klebsiella pneumoniae isolates showed different resistance phenotypes; S90-2 and S141 were both resistant to ampicillin, cefuroxime, and cefazolin, while M911-1 and S130-1 were sensitive to most of the 14 antibiotics tested. S90-2 belongs to sequence type 629 (ST629), and its genome includes 30 resistance genes, including bla(CTX-M-14) and bla(SHV-11), while its plasmid pS90-2.3 (IncR) carries qacEdelta1, sul1, and aph(3')-Ib. S141 belongs to ST1662, and its genome includes a total of 27 resistance genes, including bla(SHV-217). M911-1 is a new ST, carrying bla(SHV-1) and fosA6, and its plasmid pM911-1.1 (novel) carries qnrS1, bla(LAP-2), and tet(A). S130-1 belongs to ST3753, carrying bla(SHV-11) and fosA6, and its plasmid pS130-1 [IncFIB(K)] carries only one resistance gene, tet(A). pM911-1.1 and pS90-2.3 do not have conjugative transfer ability, but their resistance gene fragments are derived from multiple homologous Enterobacteriaceae strain chromosomes or plasmids, and the formation of resistance gene fragments (multidrug resistance region) involves interactions between multiple mobile element genes, resulting in a complex and diverse resistance plasmid structure. The homologous plasmids related to pM911-1.1 and pS90-2.3 were mainly from isolated human-infecting bacteria in China, namely, K. pneumoniae and Escherichia coli. The multidrug-resistant K. pneumoniae isolates carried by wild birds in this study had drug resistance phenotypes conferred primarily by multidrug resistance plasmids that were closely related to human-infecting bacteria. IMPORTANCE Little is known about the pathogenic microorganisms carried by wild animals. This study found that the multidrug resistance phenotype of Klebsiella pneumoniae isolates carried by wild birds was mainly attributed to multidrug resistance plasmids, and these multidrug resistance plasmids from wild birds were closely related to human-infecting bacteria. Wild bird habitats overlap to a great extent with human and livestock habitats, which further increases the potential for horizontal transfer of multidrug-resistant bacteria among humans, animals, and the environment. Therefore, wild birds, as potential transmission hosts of multidrug-resistant bacteria, should be given attention and monitored.202336840587