# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3179 | 0 | 0.9985 | Deciphering the mobility, pathogenic hosts, and co-selection of antibiotic resistance genes in untreated wastewater from three different hospitals. OBJECTIVE: Antibiotic resistance genes (ARGs) in hospital wastewater pose significant environmental and public health risks, yet the co-selection mechanisms involving metal/biocide resistance genes (MRGs/BRGs) and the role of mobile genetic elements (MGEs) remain poorly characterized. This study aimed to comprehensively assess the abundance, mobility, pathogenic hosts, and co-selection patterns of ARGs, MRGs, and BRGs in untreated wastewater from three types of hospitals. METHODS: Untreated wastewater samples from nine sources across three hospital types (general, traditional Chinese medicine, and dental) were analyzed using metagenomic sequencing and assembly. ARGs, MRGs, and BRGs were identified via the SARG and BacMet databases. ARG hosts, mobility, and MGE co-occurrence were analyzed using PlasFlow and MOB-suite, with risk levels evaluated alongside pathogenic bacteria databases. RESULTS: A total of 1911 ARGs (222 subtypes), 1662 MRGs (167 subtypes), and 916 BRGs (139 subtypes) were detected. Tetracycline, multidrug, and β-lactam resistance genes were predominant, with 46.43 % of ARGs being plasmid-associated. Key pathogens including Klebsiella pneumoniae and Enterococcus spp. harbored high-risk ARGs such as KPC-2 and NDM-1. Notably, 76.2 % of ARGs in traditional Chinese medicine hospital wastewater were classified as high-risk. Significant co-occurrence of ARGs with MGEs (e.g., DDE recombinases) and MRGs/BRGs was observed, underscoring the role of horizontal gene transfer and co-selection. CONCLUSION: Untreated hospital wastewater represents a significant reservoir of ARGs, with risks exacerbated by pathogenic hosts, MGE-mediated HGT, and metal/biocide co-selection. These findings underscore the urgent need for optimized wastewater treatment strategies to curb the spread of antibiotic resistance and inform future intervention efforts. | 2025 | 41067299 |
| 6858 | 1 | 0.9985 | Antibiotic resistance genes risks in relation to host pathogenicity and mobility in a typical hospital wastewater treatment process. Hospital wastewaters (HWWs) serve as critical reservoirs for disseminating antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, the dynamics and noteworthy shifts of ARGs and their associated pathogenicity, mobility, and resistome risks during HWWs treatment processes remain poorly understood. Utilizing metagenomic sequencing and assembly, we identified 817 ARG subtypes conferring resistance to 20 classes of antibiotics across 18 HWW samples from influent to effluent. Genes encoding resistance to multidrug, aminoglycoside and beta_lactam were the most prevalent ARG types, reflecting patterns observed in clinical settings. On-site treatment efforts decreased the relative abundance of ARGs by 77.4% from influent to secondary sedimentation, whereas chlorine disinfection significantly increased their abundance in the final effluent. Deterministic processes primarily drove the taxonomic assembly, with Proteobacteria being the most abundant phylum and serving as the primary host for 15 ARG types. Contig-based analysis further revealed 114 pathogenic ARB, with Escherichia coli, Pseudomonas alcaligenes, and Pseudomonas aeruginosa exhibiting multidrug-resistant. The contributions of host bacteria and pathogenic ARB varied throughout wastewater treatment. In addition, 7.10%-31.0 % ARGs were flanked by mobile genetic elements (MGEs), predominantly mediated by transposase (74.1%). Notably, tnpA exhibited the highest potential for ARG dissemination, frequently co-occurring with beta-lactam resistance genes (35.2%). Considering ARG profiles, pathogenic hosts, and transferability, raw influent exhibited the highest antibiotic resistome risk index (ARRI), followed by the final effluent. Chlorine disinfection exacerbated resistome risks by inducing potential pathogenic ARB and mobile ARGs, posing threats to the receiving environment. This study delineates ARG occurrence patterns, highlights mechanisms of ARG carriage and horizontal gene transfer, and provides insights for assessing resistance risks and prioritizing interventions in clinical settings. | 2024 | 38964571 |
| 7158 | 2 | 0.9984 | Antibiotic resistome, potential pathogenic bacteria and associated health risk in geogenic chromium groundwater. Geogenic chromium (Cr) contamination in groundwater poses a global environmental challenge. However, with antibiotic resistance remaining a public health threat, the occurrence and associated health risks of antibiotic resistomes in Cr contaminated groundwater and their linkages to geogenic Cr are poorly understood. Here, we assessed the groundwater microbiome, potential pathogenic bacteria, and antibiotic resistomes with associated health risks in geogenic Cr impacted groundwater across shallow (<100 m) and deep (>100 m) aquifers in a plateau from Northwestern China. A total of 174 antibiotic resistance genes (ARGs) were detected with absolute abundances reaching 1.28 × 10(8) copies/L. Shallow and deep groundwater harbored distinct ARG profiles with significantly higher abundance and associated health risks presented in shallow groundwater (p < 0.01). A total of 332 potential pathogenic bacteria were identified, abundances of which 53.9 % were strongly correlated to the prevalent ARGs. Toxic Cr(VI) as a potential co-selective agent was positively associated with elevated ARG-linked potential pathogenic bacteria and mobile genetic elements (MGEs). Our findings collectively revealed the geogenic Cr contaminated groundwater as a significant reservoir of ARGs and potential pathogens, highlighting the dual risks of geogenic Cr as both a toxicant and promoter for accelerating ARGs within aquifers. | 2025 | 41072644 |
| 6865 | 3 | 0.9983 | A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. River is considered generally as a natural reservoir of antibiotic resistance genes (ARGs) in environments. For the prevention and control of ARG risks, it is critical to comprehensively characterize the antibiotic resistomes and their associations in riverine systems. In this study, we proposed a metagenomic framework for identifying antibiotic resistomes in river sediments from multiple categories, including ARG potential, ARG hosts, pathogenicity potential, co-selection potential and gene transfer potential, and applied it to understand the presence, hosts, and co-occurrence of ARGs in the sediments of an urban river in Beijing. Results showed that a total of 203 ARG subtypes belonging to 21 ARG types were detected in the river sediments with an abundance range of 107.7-1004.1×/Gb, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone and sulfonamide resistance genes. Host-tracking analysis identified Dechloromonas, Pseudoxanthomonas, Arenimonas, Lysobacter and Pseudomonas as the major hosts of ARGs. A number of ARG-carrying contigs (ACCs) were annotated as fragments of pathogenic bacteria and carried multiple multidrug-ARGs. In addition, various biocide/metal resistance genes (B/MRGs) and mobile genetic elements (MGEs), including prophages, plasmids, integrons and transposons, were detected in the river sediments. More importantly, the co-occurrence analysis via ACCs showed a strong association of ARGs with B/MRGs and MGEs, indicating high potential of co-selection and active horizontal transmission for ARGs in the river environment, likely driven by the frequent impact of anthropogenic activities in that area. | 2019 | 30453138 |
| 6829 | 4 | 0.9983 | Metagenomic insights into the characteristics and co-migration of antibiotic resistome and metal(loid) resistance genes in urban landfill soil and groundwater. The heavy metals and antibiotic resistance genes (ARGs) in landfills showed a significant correlation; however, the relationship between metal(loid) resistance genes (MRGs) and ARGs in contaminated environments, as well as whether they co-migrate with human pathogenic bacteria (HPB), remains unclear. This study is the first to report the characteristics and co-migration of ARGs and MRGs in the soil and groundwater of aged urban landfill sites. Our findings indicated that quinolone, efflux, and macrolide-lincosamide-streptogramin represented the most abundant ARGs identified. Notably, ARG abundance was higher in groundwater compared to soil, with subtype diversity reflecting a similar trend; however, microbial diversity in soil was greater. Metagenome-assembled genomes data indicated a higher risk of antibiotic-resistant HPB in groundwater. It is imperative to focus on HPB that co-carry ARGs and MRGs alongside mobile genetic elements (MGEs), such as Ralstonia pickettii and Pseudomonas stutzeri. Genes conferring resistance to copper and mercury, as well as MGEs such as qacEdelta and intI1, played a critical role in promoting horizontal gene transfer of antibiotic resistance. MRG may promote ARG migration by affecting the permeability of the cell membrane. Procrustes analysis revealed a strong similarity (87 %) between heavy metals and MRG structures. Variance partitioning analyses demonstrated that both heavy metals and biological factors jointly governed landfill ARGs (96.2 %), exerting a more substantial influence in groundwater than in soil. This study serves as a reference for managing landfill, while emphasizing the importance of addressing the co-migration of MRGs and ARGs in pathogens when controlling the spread of risks. | 2025 | 40614847 |
| 6860 | 5 | 0.9983 | Impact of coastal deoxygenation on antibiotic resistance gene profiles in size-fractionated bacterial communities. Oxygen loss disrupts marine ecosystems, threatening biodiversity and causing mass mortality of marine life. Antibiotic resistance genes (ARGs) pose a significant threat to human health by promoting the spread of resistant pathogens, making infections harder to treat and increasing mortality risks. However, the interplay between deoxygenation and ARG dynamics remains poorly understood. In this study, we employed time-series metagenomics to investigate the responses of ARG profiles in free-living (FL) and particle-associated (PA) fraction to oxygen loss during a 22-day summer deoxygenation event in the East China Sea. In total, we identified 1,186 ARG subtypes and 2,279 mobile genetic element (MGE) subtypes. The most dominant resistance classes of antibiotics were multidrug (23.5%), followed by tetracycline (15%), macrolide-lincosamide-streptogramin (13.4%), peptide (10.3%), glycopeptide (8.7%), aminoglycoside (7.3%), and beta-lactam (4.9%). We found that ARG richness in FL fraction increased with declining oxygen levels, particularly for beta-lactam and multidrug class, while no significant relationship was observed in the PA fraction. Although the total relative abundance of ARGs in both fraction showed no significant oxygen dependence, beta-lactam and multidrug resistance genes in FL fraction significantly increased with oxygen loss. Co-occurrence network analysis revealed stronger positive associations between ARGs and MGEs in the FL fraction, suggesting enhanced gene transfer among environmental bacteria. Furthermore, neutral community model analysis indicated that stochastic processes also played an interactive role in shaping ARG composition dynamics in both bacterial fractions. Our findings provide evidence that coastal deoxygenation preferentially enriches high-risk ARGs (e.g., beta-lactamase genes) in FL bacteria through MGE-mediated transfer, highlighting escalating antibiotic resistance risks that threaten both ecosystem and human health under climate warming. This study offers a framework for size-fractionated ARG monitoring and targeted mitigation strategies in coastal ecosystems. | 2025 | 40669246 |
| 6823 | 6 | 0.9983 | Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts. | 2022 | 35716556 |
| 7267 | 7 | 0.9983 | Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. BACKGROUND: Municipal wastewater treatment plants (WWTPs) are pivotal reservoirs for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Selective pressures from antibiotic residues, co-selection by heavy metals, and conducive environments sustain ARGs, fostering the emergence of ARB. While advancements in WWTP technology have enhanced the removal of inorganic and organic pollutants, assessing ARG and ARB content in treated water remains a gap. This metagenomic study meticulously examines the filtration efficiency of two distinct WWTPs-conventional (WWTPC) and advanced (WWTPA), operating on the same influent characteristics and located at Aligarh, India. RESULTS: The dominance of Proteobacteria or Pseudomonadota, characterized the samples from both WWTPs and carried most ARGs. Acinetobacter johnsonii, a prevailing species, exhibited a diminishing trend with wastewater treatment, yet its persistence and association with antibiotic resistance underscore its adaptive resilience. The total ARG count was reduced in effluents, from 58 ARGs, representing 14 distinct classes of antibiotics in the influent to 46 and 21 in the effluents of WWTPC and WWTPA respectively. However, an overall surge in abundance, particularly influenced by genes such as qacL, bla(OXA-900), and rsmA was observed. Numerous clinically significant ARGs, including those against aminoglycosides (AAC(6')-Ib9, APH(3'')-Ib, APH(6)-Id), macrolides (EreD, mphE, mphF, mphG, mphN, msrE), lincosamide (lnuG), sulfonamides (sul1, sul2), and beta-lactamases (bla(NDM-1)), persisted across both conventional and advanced treatment processes. The prevalence of mobile genetic elements and virulence factors in the effluents possess a high risk for ARG dissemination. CONCLUSIONS: Advanced technologies are essential for effective ARG and ARB removal. A multidisciplinary approach focused on investigating the intricate association between ARGs, microbiome dynamics, MGEs, and VFs is required to identify robust indicators for filtration efficacy, contributing to optimized WWTP operations and combating ARG proliferation across sectors. | 2025 | 40050994 |
| 7159 | 8 | 0.9983 | Profiles and natural drivers of antibiotic resistome in multiple environmental media in penguin-colonized area in Antarctica. Profiles and driving mechanisms of antibiotic resistome in the polar region are important for exploring the natural evolution of antibiotic resistance genes (ARGs). Here, we evaluated the profiles of antibiotic resistome in multiple media on Inexpressible Island, Terra Nova Bay, Antarctica. Average concentrations of ARGs in intracellular DNA (iARGs) among water (3.98 × 10(6) copies/L), soil (3.41 × 10(7) copies/kg), and penguin guano (7.04 × 10(7) copies/kg) were higher than those of ARGs in extracellular DNA (eARGs) among water (1.99 × 10(4) copies/L), soil (1.75 × 10(6) copies/kg), and penguin guano (8.02 × 10(6) copies/kg). It was indicated that the transmission of ARGs across different media occurs with around 77.8% of iARGs from soil and 86.7% of iARGs from penguins observed in water, and 80.7% of iARGs and 56.7% of eARGs from penguins found in soil. Annual inputs of ARGs from Adélie penguins on Inexpressible Island have increased since 1983. Bacitracin, multidrug, and aminoglycoside resistance genes were the main ARGs among water, soil, and penguin guano. Primary medium-risk ARGs associated with human pathogenic bacteria were multidrug resistance genes, and main low-risk ARGs associated with mobile genetic elements (MGEs) were aminoglycoside resistance genes. Antibiotic-resistant bacteria (ARB) from soil and penguins were more phylogenetically related to aquatic antibiotic-resistant mesophiles than aquatic antibiotic-resistant psychrophiles. MGEs, ARB, bacterial diversities, antibiotics, and metals could explain total ARGs between water and soil. Intracellular MGEs were the most significant in-situ driver of iARGs in water, reflecting that horizontal gene transfer could facilitate the spread of ARGs in water. Penguins were important ex-situ drivers of environmental antibiotic resistome, which was linked with risky ARGs between water and soil. These findings highlight the major roles of natural drivers (e.g., MGEs and penguins) in shaping environmental antibiotic resistome in polar areas, improving our understanding of the evolution of environmental microbiome. | 2025 | 40166126 |
| 7019 | 9 | 0.9983 | Fate, mobility and pathogenicity of antibiotic resistome in a full-scale drinking water treatment plant: Highlighting the chlorination risks. Drinking water treatment plants (DWTPs) serve as the last barrier in preventing the spread of antibiotic resistance genes (ARGs) into tap water, yet the distribution and dissemination mechanisms of ARGs in DWTPs remain unclear. In this study, the antibiotic resistome of a full-scale DWTP using Nansi Lake (an important node of the South-to-North Water Diversion Project's eastern route, China) as water source was investigated based on metagenomic analysis. The results showed that coagulation and chlorination were the two crucial processes increasing the relative abundance of ARGs in the DWTP, and the former predominantly enhanced that of sulfonamide RGs, while the latter increased that of bacitracin, aminoglycoside and multidrug RGs. ARG hosts and mobile genetic elements (MGEs) both played significant roles in ARG compositions. The persistence of Sphingorhabdus during the conventional treatment stages and the dissemination potential of plasmids accounted for the relative abundance of sulfonamide RGs, while the chlorine and multidrug resistance of Acinetobacter, Acidovorax, and Pseudomonas, along with the coexistence of various MGEs, suggested the persistence and transmission risk of ARGs after chlorination. Ozonation and activated carbon filtration could eliminate some human-pathogenic bacteria (HPB), but the chlorination process significantly increased the relative abundance of HPB. The multidrug-resistant HPB such as Acinetobacter calcoaceticus and Acinetobacter haemolyticus were the key targets for risk control in the DWTP. Our findings provide new insights into the fate, mobility, and pathogenicity of ARGs in a typical DWTP, offering beneficial guidance for decision-making in the risk control of ARGs in DWTPs. | 2025 | 40587929 |
| 7004 | 10 | 0.9983 | Sheep and rapeseed cake manure promote antibiotic resistome in agricultural soil. The application of manure in agriculture caused the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil environments. However, the co-occurrence pattern and host diversity of ARGs and MGEs in soils amended with animal and green manures remains unclear. In this study, metagenomic assembly and binning techniques were employed to comprehensively explore the effects of sheep manure and green manure on soil microbiome, antibiotic resistomes, and ARG hosts. Both rapeseed cake manure and sheep manure increased the abundance and diversity of ARGs, with sheep manure particularly enhancing the abundance of ARGs conferring resistant to multidrug, quinolone, rifampicin, and macrolide-lincosamide-streptogramin (MLSB). Mobile genetic elements (MGEs), such as plasmids, transposases, and integrases, preferentially enhanced the potential mobility of some ARGs subtypes (i.e. sul2, aadA, qacH, and folp), facilitating the spread of ARGs. Additionally, sheep manure reshaped the bacterial community structure and composition as well as ARG hosts, some opportunistic pathogens (i.e. Staphylococcus, Streptococcus, and Pantoea) acquired antibiotic resistance and remained recalcitrant. It is concluded that rapeseed cake manure and sheep manure increased the co-occurrence of ARGs and MGEs, enriched the potential ARG hosts, and promoted the dissemination of ARGs in agricultural soils. | 2025 | 40633350 |
| 7016 | 11 | 0.9983 | Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. The intensive use of antibiotics results in their continuous release into the environment and the subsequent widespread occurrence of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This study used Illumina high-throughput sequencing to investigate the broad-spectrum profiles of both ARGs and MGEs in activated sludge and anaerobically digested sludge from a full-scale wastewater treatment plant. A pipeline for identifying antibiotic resistance determinants was developed that consisted of four categories: gene transfer potential, ARG potential, ARGs pathway and ARGs phylogenetic origin. The metagenomic analysis showed that the activated sludge and the digested sludge exhibited different microbial communities and changes in the types and occurrence of ARGs and MGEs. In total, 42 ARGs subtypes were identified in the activated sludge, while 51 ARG subtypes were detected in the digested sludge. Additionally, MGEs including plasmids, transposons, integrons (intI1) and insertion sequences (e.g. ISSsp4, ISMsa21 and ISMba16) were abundant in the two sludge samples. The co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that some environmental bacteria (e.g. Clostridium and Nitrosomonas) might be potential hosts of multiple ARGs. The findings increase our understanding of WWTPs as hotspots of ARGs and MGEs, and contribute towards preventing their release into the downstream environment. | 2017 | 28689130 |
| 6834 | 12 | 0.9983 | Landscape of antibiotic resistance genes and bacterial communities in groundwater on the Tibetan Plateau, and distinguishing their difference with low-altitude counterparts. Groundwater is a vital source of drinking water for Tibetans. Antibiotic resistance genes (ARGs) and bacterial communities in groundwater on the Tibetan Plateau remain unclear. Furthermore, the characterization of their differences between high-altitude and low-altitude groundwater is still unrevealed. Herein, 32 groundwater samples were collected on the plateau, and intra- and extracellular ARGs (iARGs and eARGs), and bacterial communities were characterised through qPCR assays to 19 ARGs and 16S rRNA sequencing. It showed top four abundant intra- and extracellular last-resort ARGs (LARGs) were bla(OXA-48), mcr-1, vanA, and vanB, whereas dominant common ARGs (CARGs) were tetA and ermB, respectively. CARGs had higher abundances than LARGs, and iARGs were more frequently detected than eARGs. Proteobacteria, an invasive resident phylum, and Firmicutes dominated eDNA release. Network analysis revealed all observed LARGs co-occurred with pathogenic and non-pathogenic bacteria. Community diversity was significantly associated with longitude and elevation, while nitrate correlated with ARGs. Comparative analysis demonstrated eARG frequencies and abundances were higher at high altitudes than at low altitudes. Additionally, Acinetobacter and Pseudomonas specifically dominated at high altitudes. This study reveals the widespread prevalence of ARGs, particularly LARGs, in groundwater on the less-disturbed Tibetan Plateau and underlines the potential risks associated with the LARG-carrying bacteria. ENVIRONMENTAL IMPLICATION: Antibiotic resistance genes (ARGs), which are defined as emerging environmental contaminants, are becoming a global concern due to their ability to confer antibiotic resistance to pathogens. Our findings highlight the prevalence of ARGs, particularly LARGs, in groundwater on the Tibetan Plateau, and the possibility that naturally-occurring pathogenic and non-pathogenic bacteria carry multiple LARGs. In addition, we further reveal differences in the distribution of ARGs and bacterial community between high-altitude and low-altitude groundwater. Collectively, our findings offer an important insight into the potential public risks related to groundwater on the Tibetan Plateau. | 2023 | 37595466 |
| 6866 | 13 | 0.9982 | Deciphering the antibiotic resistome in stratified source water reservoirs in China: Distribution, risk, and ecological drive. The proliferation and dissemination of antibiotic resistance genes (ARGs) in source water reservoirs may pose a threat to human health. This study investigated the antibiotic resistance in stratified reservoirs in China across different seasons and spatial locations. In total, 120 ARG subtypes belonging to 15 ARG types were detected with an abundance ranging from 171.06 to 793.71 × /Gb. Multidrug, tetracycline, aminoglycoside, and bacitracin resistance genes were dominant in the reservoirs. The abundance and transfer potential of ARGs were notably higher, especially during the stratified period, with markedly elevated levels in the bottom layer compared to the surface layer. Metagenomic assembly yielded 1357 ARG-carrying contigs, belonging to 83 resistant bacterial species, of which 13 were identified as human pathogen bacteria (HPB). HPB hosts (Sphingomonas sp., Burkholderiales sp., and Ralstonia sp., etc.) were super carriers of ARGs. Genes including ompR, bacA, golS, and ugd carried on HPB plasmids exhibited higher abundance in the water, warranting attention to the risk of resistance transmission. Environmental pressures have caused a shift in the assembly mechanism of ARGs, transitioning from a random process in surface water to a deterministic process in bottom water. The results of this study will deepen people's understanding of the ARG risk in stratified reservoirs. | 2025 | 39673943 |
| 6861 | 14 | 0.9982 | Investigating the antibiotic resistance genes and mobile genetic elements in water systems impacted with anthropogenic pollutants. A wide range of pollutants, including heavy metals, endocrine-disrupting chemicals (EDCs), residual pesticides, and pharmaceuticals, are present in various water systems, many of which strongly drive the proliferation and dissemination of antimicrobial resistance genes (ARGs), heightening the antimicrobial resistance (AMR) crisis and creating a critical challenge for environmental and health management worldwide. This study addresses the impact of anthropogenic pollutants on AMR through an extensive analysis of ARGs and mobile genetic elements (MGEs) in urban wastewater, source water, and drinking water supplies in India. Results indicated that bla(TEM) and bla(CTXM-32) were the dominant ARGs across all water systems, underscoring the prevalence and dominance of resistance against β-lactam antibiotics. Moreover, transposase genes such as tnpA-02, tnp-04, and tnpA-05 were detected across all water systems, indicating potential mechanisms for genetic transfer. The ubiquitous presence of intI-1 and clin-intI-1 genes underscores the widespread dissemination of MGEs, posing challenges for water quality management. Besides, human pathogenic bacteria such as Clostridium, Acinetobacter, and Legionella were also detected, highlighting potential health risks associated with contaminated water. The identified pathogenic bacterial genera belong to the phyla Pseudomonadota and Firmicutes. Leveraging linear regression to analyze correlations between EDCs and ARG-MGEs provides deeper insights into their interconnected dynamics. DMP showed a significant influence on tnpA-02 (p = 0.005), tnpA-07 (p = 0.015), sul-1 (p = 0.008), intI-1 (p = 0.03), and clin-intI1 (p = 0.012), while DiNOP demonstrated a very high impact on tnpA-05 (p = 0). Redundancy analysis revealed significant correlations between resistance genes and EDCs. Additionally, environmental parameters such as pH were highly correlated with the majority of MGEs and bla(CTXM-32). Furthermore, we found that F(-), NO(-3), and SO(4)(-2) were significantly correlated with sul-1, with F(-) exhibiting the highest impact, emphasizing the intricate interplay of pollutants in driving AMR. Understanding these interconnected factors is crucial for developing effective strategies and sustainable solutions to combat antibiotic resistance in environmental settings. | 2025 | 39824274 |
| 7164 | 15 | 0.9982 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 7005 | 16 | 0.9982 | The mobility, host, and co-occurrence of antibiotic resistance genes in multi-type pig manure-soil systems: Metagenome assembly analysis. Antibiotic resistance genes (ARGs) pose significant threats to public health and environmental safety, yet the mobility and hosts of ARGs in animal manure-soil systems remain poorly understood. Here, we evaluated the environmental risks of tilmicosin (TIL) and investigated ARG profiles, mobility, and drivers in pig manure-soil systems using metagenomic assembly. TIL was effectively degraded during aerobic composting and fertilization via hydroxylation, demethylation, and deglycosylation. Notably, the total abundance of ARGs significantly decreased during aerobic composting and fertilization, and manure types affected the distribution and composition of ARGs in fertilized soils. There was a special correlation between the genetic location and type of ARGs. In addition, the results showed co-localization of some specific ARGs and mobile genetic elements (MGEs) (tetA-tetR- transposase; tetR-floR- Tn3 family). A significant correlation was found between Escherichia coli and multiple ARG types, especially multidrug ARGs. Microbial community was the dominant factor driving the variations of ARGs in pig manure-soil systems, followed by MGEs, environmental factors, and antibiotic concentration. This study advances the understanding on the environmental risk assessment of TIL and elucidates the key drivers of ARG dissemination in pig manure-soil systems, providing critical insights and actionable strategies for sustainable livestock management and environmental risk control. | 2025 | 40865323 |
| 3178 | 17 | 0.9982 | Metagenomic analysis reveals the diversity, transmission and potential ecological risks of yak nasal bacteria-carried antibiotic resistance genes in the Sichuan region of Qinghai-Tibet plateau. The Qinghai-Tibet Plateau (QTP) and yaks play respectively vital roles in global and plateau ecosystems. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants. However, few studies have investigated the abundance and diversity of ARGs and mobile genetic elements (MGEs) in the yak upper respiratory tract and their surrounding pastures. Moreover, the possible pathways for ARG transmission within these ecosystems have not yet been elucidated. Therefore, we investigated the ARG profiles, MGE profiles, and ARG-carrying host bacteria in yaks and their pasture collected from Ganzi and Aba region in Sichuan Province. Metagenomic analyses showed that 22 ARG types and 5 MGEs types were identified in 18 samples. Multidrug resistance gene (mexT) and bacitracin resistance gene (bacA) was identiffed as hotspots, which may compromise medical treatment options. Co-occurrence network analysis revealed that 12 bacterial genera may be potential hosts at the genus level. The enrich of ARGs and MGEs diversity were observed in QTP (Sichuan province) pasture ecosystems which demands evidence-based interventions to mitigate ARGs transmission risks. | 2025 | 40373403 |
| 7167 | 18 | 0.9982 | Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems. | 2024 | 38782270 |
| 6841 | 19 | 0.9982 | Deciphering key traits and dissemination of antibiotic resistance genes and degradation genes in pharmaceutical wastewater receiving environments. Discharge of pharmaceutical wastewater significantly affects the receiving environments. However, the development of antibiotic resistance and microbial enzymatic degradation in wastewater-receiving soils and rivers remains unclear. This study investigated a sulfonamide-producing factory to explore the distribution of antibiotic resistance genes (ARGs) in the receiving river and soil environments (0-100 cm depth), and the potential hosts of sadABC genes (sulfonamide-degrading genes) as well as their phylogenetic characterization. We identified plentiful ARGs (28 types and 1065 subtypes) and their hosts (30 phyla and 340 MAGs) in three media (surface water, sediment, and soil). Results indicated that the abundances of total resistome in water and sediment of receiving river (0-1.5 km) were higher than the global river resistome median levels. Wastewater significantly affected the soil resistome, leading to an average 5-fold increase in ARG abundance, and a 22-fold enrichment of sulfonamide ARGs. The abundance and diversity of soil resistome decreased significantly with depth, and the abundance was below the global soil resistome median level at the depth greater than 20 cm. The detection of 17 risk rank I ARGs and the enrichment of multidrug-resistant pathogenic bacteria in soil and river highlighted the resistance risks in the environments. Notably, 73 sadABC-carrying contigs were detected, which were mainly hosted by Microbacteriaceae and some other previously unreported bacteria, such as Mycobacteriaceae spp. The findings offer valuable insights into antimicrobial resistance (AMR) risk assessment and the bioremediation of sulfonamides pollution in the environment affected by pharmaceutical wastewater. | 2025 | 39914310 |