# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1237 | 0 | 0.9764 | Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems. | 2018 | 30477153 |
| 1989 | 1 | 0.9762 | Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. BACKGROUND: Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. METHODS: Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. RESULTS: A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. CONCLUSION: The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association. | 2024 | 39850143 |
| 5236 | 2 | 0.9762 | Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion. | 2024 | 39104589 |
| 2100 | 3 | 0.9762 | Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon. | 2021 | 34790487 |
| 5235 | 4 | 0.9762 | Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance. | 2023 | 36948496 |
| 948 | 5 | 0.9758 | Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. BACKGROUND: Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. METHOD: The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. RESULTS: In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. CONCLUSION: The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1. | 2024 | 39600552 |
| 1238 | 6 | 0.9758 | Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health. | 2022 | 36015067 |
| 1494 | 7 | 0.9757 | Characterization of a Novel Chromosomal Class C β-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Yokenella regensburgei, a member of the family Enterobacteriaceae, is usually isolated from environmental samples and generally resistant to early generations of cephalosporins. To characterize the resistance mechanism of Y. regensburgei strain W13 isolated from the sewage of an animal farm, whole genome sequencing, comparative genomics analysis and molecular cloning were performed. The results showed that a novel chromosomally encoded class C β-lactamase gene with the ability to confer resistance to β-lactam antibiotics, designated bla (YOC) (-) (1), was identified in the genome of Y. regensburgei W13. Kinetic analysis revealed that the β-lactamase YOC-1 has a broad spectrum of substrates, including penicillins, cefazolin, cefoxitin and cefotaxime. The two functionally characterized β-lactamases with the highest amino acid identities to YOC-1 were CDA-1 (71.69%) and CMY-2 (70.65%). The genetic context of the bla (YOC) (-) (1) -ampR-encoding region was unique compared with the sequences in the NCBI nucleotide database. The plasmid pRYW13-125 of Y. regensburgei W13 harbored 11 resistance genes (bla (OXA) (-) (10), bla (LAP) (-) (2), dfrA14, tetA, tetR, cmlA5, floR, sul2, ant(3″)-IIa, arr-2 and qnrS1) within an ∼34 kb multidrug resistance region; these genes were all related to mobile genetic elements. The multidrug resistance region of pYRW13-125 shared the highest identities with those of two plasmids from clinical Klebsiella pneumoniae isolates, indicating the possibility of horizontal transfer of these resistance genes between bacteria of various origins. | 2020 | 32973731 |
| 1508 | 8 | 0.9757 | First Detection and Genomic Insight into mcr-1 Encoding Plasmid-Mediated Colistin-Resistance Gene in Escherichia coli ST101 Isolated from the Migratory Bird Species Hirundo rustica in Thailand. Background: This study aimed to investigate the occurrence of mcr-1 encoding plasmid-mediated colistin-resistance gene in Escherichia coli isolated from migratory birds in Thailand. Materials and Methods: A total of 178 cloacal swabs from migratory birds was sampled and isolated from 2016 to 2017 in Nan, Trang, and Bangkok, Thailand. The multiplex polymerase chain reaction was used to screen the resistance genes. After screening, a disk diffusion assay and the minimum inhibitory concentration were investigated. The draft genome sequence of isolate 2A85589 was obtained using an Illumina HiSeq X-Ten platform. The genome was assembled using SPAdes 3.0.0. Antimicrobial resistance genes were identified using ResFinder 3.1. Results: We reported E. coli ST101 of isolate 2A85589, an mcr-1-carrying resistance gene isolated from the migratory bird species Hirundo rustica in Thailand. The draft genome of 2A85589 was 4,621,016 bp in size. IncHI1A plasmid was identified using PlasmidFinder with high coverage. In silico analysis detected the presence of eight putative acquired resistance genes, namely blaTEM-1B, mcr-1, mef(A), mef(B), QnrS1, sul3, tet(A), and tet(B), which conferred resistance to β-lactam, colistin, macrolide, quinolone, sulfonamide, and tetracycline. Conclusion: This study underlines the potential risk of the environmental contamination of mcr-1-carrying E. coli isolated from the migratory bird. The long range migration of birds can result in dissemination of mcr-1-carrying bacteria globally. Therefore, plasmid-mediated colistin is an urgent need to be addressed in both human and veterinary medicine for disease control and prevention. | 2019 | 31334682 |
| 5192 | 9 | 0.9757 | Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment. | 2024 | 38881048 |
| 833 | 10 | 0.9757 | Diverse gene cassettes in class 1 integrons of facultative oligotrophic bacteria of River Mahananda,West Bengal, India. BACKGROUND: In this study a large random collection (n=2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007-2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. METHODOLOGY/PRINCIPAL FINDINGS: Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ(2)) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6'-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. CONCLUSIONS: Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. | 2013 | 23951238 |
| 849 | 11 | 0.9756 | Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs. | 2025 | 39163245 |
| 2465 | 12 | 0.9755 | Antimicrobial Resistance Surveillance of Tigecycline-Resistant Strains Isolated from Herbivores in Northwest China. There is no doubt that antimicrobial resistance (AMR) is a global threat to public health and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates from herbivores in northwest China. In this study, a total of 300 samples were collected from various provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained. In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then sequences were blasted against the AMR gene database and virulence factor database. Several resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone resistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A, and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E) in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention strategies, as well as multifaceted intervention strategies. | 2022 | 36557685 |
| 9066 | 13 | 0.9755 | VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. VRprofile is a Web server that facilitates rapid investigation of virulence and antibiotic resistance genes, as well as extends these trait transfer-related genetic contexts, in newly sequenced pathogenic bacterial genomes. The used backend database MobilomeDB was firstly built on sets of known gene cluster loci of bacterial type III/IV/VI/VII secretion systems and mobile genetic elements, including integrative and conjugative elements, prophages, class I integrons, IS elements and pathogenicity/antibiotic resistance islands. VRprofile is thus able to co-localize the homologs of these conserved gene clusters using HMMer or BLASTp searches. With the integration of the homologous gene cluster search module with a sequence composition module, VRprofile has exhibited better performance for island-like region predictions than the other widely used methods. In addition, VRprofile also provides an integrated Web interface for aligning and visualizing identified gene clusters with MobilomeDB-archived gene clusters, or a variety set of bacterial genomes. VRprofile might contribute to meet the increasing demands of re-annotations of bacterial variable regions, and aid in the real-time definitions of disease-relevant gene clusters in pathogenic bacteria of interest. VRprofile is freely available at http://bioinfo-mml.sjtu.edu.cn/VRprofile. | 2018 | 28077405 |
| 1415 | 14 | 0.9755 | Antibiogram and Molecular Characterization of AmpC and ESBL-Producing Gram-Negative Bacteria from Poultry and Abattoir Samples. BACKGROUND AND OBJECTIVE: The global antibiotic resistance threat posed by ESBL and AmpC-producing Gram-Negative Bacteria (GNB) is a public health menace that rolls back the gains of 'One Health'. This study investigated the antibiogram and prevalence of AmpC and ESBL genes in Escherichia coli, Klebsiella spp. and Pseudomonas spp. from poultry and abattoir milieus in Enugu and Ebonyi States, Nigeria. MATERIALS AND METHODS: Isolation, identification and characterization of GNB from samples (150 abattoirs and 300 poultry) were done using standard microbiological techniques. Antimicrobial Susceptibility Testing (AST), as well as phenotypic screening for ESBL and AmpC enzymes, was performed using the Kirby-Bauer disc diffusion technique. PCR technique was used to screen isolated GNB for AmpC and ESBL genes. RESULTS: Exactly 42 E. coli and 8 Klebsiella spp. isolate from poultry samples and another 5 P. aeruginosa isolates from abattoir samples were phenotypically confirmed to be ESBL-producers. AmpC enzymes were phenotypically detected in 8 E. coli and 13 P. aeruginosa isolates from poultry samples. All ESBL and AmpC-positive bacteria exhibited high resistance frequencies to tested antibiotics, especially to the carbapenems and cephalosporins. ESBL genes (CTX-M, SHV-1, TEM) and AmpC genes (ACC-M, MOX-M, DHA-M) were harbored by the isolated GNB in this study. Overall, the DHA-M and CTX-M genes, mediating AmpC and ESBL production respectively were the most prevalent genes harbored by the tested GNB. CONCLUSION: This study reported that AmpC and ESBL genes are harbored by Gram-negative bacteria (E. coli, Klebsiella species and P. aeruginosa) that emanated from poultry and abattoir milieus. | 2021 | 33683048 |
| 834 | 15 | 0.9755 | Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China. The molecular architecture of class 2 integrons among gram-negative bacteria from wastewater environments was investigated in Jinan, China. Out of the 391 antibiotic-resistant bacteria found, 38 isolates harboring class 2 integrons encoding potentially transferrable genes that could confer antibiotic resistance were found. These isolates were classified into 19 REP-PCR types. These strains were identified using 16S rRNA gene sequencing and found to be as follows: Proteus mirabilis (16), Escherichia coli (7), Providencia spp. (7), Proteus spp. (2), P. vulgaris (3), Shigella sp. (1), Citrobacter freundii (1), and Acinetobacter sp. (1). Their class 2 integron cassette arrays were amplified and then either analyzed using PCR-RFLP or sequenced. The typical array dfrA1-sat2-aadA1 was detected in 27 isolates. Six atypical arrays were observed, including three kinds of novel arrangements (linF2(∆attC1)-dfrA1(∆attC2)-aadA1-orf441 or linF2(∆attC1)-dfrA1(∆attC2)-aadA1, dfrA1-catB2-sat2-aadA1, and estX(Vr)-sat2-aadA1) and a hybrid with the 3'CS of class 1 integrons (dfrA1-sat2-aadA1-qacH), and dfrA1-sat1. Twenty-four isolates were also found to carry class 1 integrons with 10 types of gene cassette arrays. Several non-integron-associated antibiotic resistance genes were found, and their transferability was investigated. Results showed that water sources in the Jinan region harbored a diverse community of both typical and atypical class 2 integrons, raising concerns about the overuse of antibiotics and their careless disposal into the environment. | 2013 | 23264021 |
| 1993 | 16 | 0.9755 | Co-occurrence of antibiotic and disinfectant resistance genes in extensively drug-resistant Escherichia coli isolated from broilers in Ilorin, North Central Nigeria. OBJECTIVES: The occurrence of multidrug-resistant (MDR) bacteria in poultry poses the public health threat of zoonotic transmission to humans. Hence, this study assessed the occurrence of drug-resistant Escherichia coli in broilers in the largest live bird market in Kwara State, Nigeria in December 2020. METHODS: Presumptive E. coli isolates were isolated using the European Union Reference Laboratory guideline of 2017 and confirmed via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Broth microdilution was performed on confirmed E. coli isolates to determine the minimum inhibitory concentration. Five extensively drug-resistant (XDR) isolates were selected for Illumina whole genome sequencing to predict the resistome, phylotype, sequence type, serotype, and diversity of mobile genetic elements in these isolates. RESULTS: Of the 181 broiler caecal samples, 73 E. coli isolates were obtained, of which 67 (82.0%) and 37 (50.6%) were determined as MDR (resistant to at least three classes of antibiotics) and XDR (resistant to at least five classes of antibiotics), respectively. Whole genome sequencing revealed diverse sequence types, phylogroups, and serotypes (ST165/B1 - O80:H19, ST115/A - Unknown: H7, ST901/B1 - O109:H4, ST4087/F - O117:H42, and ST8324/A - O127:H42). The XDR E. coli isolates encoded resistance to fluoroquinolones, fosfomycin, sulfamethoxazole, ampicillin and cephalosporins, trimethoprim, aminoglycosides, chloramphenicol, tetracycline, and macrolides. Mutations in the gyrA gene conferring resistance to fluoroquinolones were also detected. There was a positive correlation between phenotypic resistance patterns and the antibiotic resistance genes that were detected in the sequenced isolates. The XDR isolates also harbored two disinfectant resistance genes (qacE and sitABCD) that conferred resistance to hydrogen peroxide and quaternary ammonium compounds, respectively. The genome of the XDR isolates harbored several mobile genetic elements and virulence-associated genes, which were conserved in all sequenced XDR isolates. CONCLUSIONS: This is the first report of co-carriage of antibiotic resistance genes and disinfectant resistance genes in E. coli isolated from broilers in Ilorin, Nigeria. Our findings suggest that poultry are potential carriers of clonally diverse, pathogenic, MDR/XDR E. coli, which may have detrimental zoonotic potentials on human health. | 2022 | 36375754 |
| 1074 | 17 | 0.9754 | Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from Pharmaceutical Wastewaters in South-Western Nigeria. Emergence and spread of Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases (ESBLs) present a major threat to public health. In this study, we characterized β-lactam-resistant K. pneumoniae isolates from six wastewater samples obtained from two pharmaceutical industries located in Lagos and Ogun States, Nigeria. Bacteria were isolated by using MacConkey agar; species identification and antibacterial susceptibility testing were performed by Vitek 2. Etest was used for ESBL phenotype confirmation. The presence of β-lactamase genes was investigated by PCR and sequencing. Bacterial strain typing was done by XbaI-macrorestriction and subsequent pulsed-field gel electrophoresis (PFGE) as well as multilocus sequence typing (MLST). Thirty-five bacterial species were isolated from the six samples; among them, we identified seven K. pneumoniae isolates with resistance to β-lactams and co-resistance to fluoroquinolones, aminoglycosides, and folate pathway inhibitors. The ESBL phenotype was confirmed in six K. pneumoniae isolates that harbored ESBL genes bla(CTX-M-15) (n = 5), bla(SHV-2) (n = 1), and bla(SHV-12) (n = 1). PFGE and MLST analysis revealed five clones belonging to four sequence types (ST11, ST15, ST37, ST101), and clone K. pneumoniae-ST101 was present in the wastewater samples from two different pharmaceutical industries. Additionally performed conjugation assays confirmed the location of β-lactamase genes on conjugative plasmids. This is the first confirmation of K. pneumoniae isolates producing CTX-M-15-ESBL from pharmaceutical wastewaters in Nigeria. The co-resistance observed might be a reflection of the different drugs produced by these industries. Continuous surveillance of the environmental reservoirs of multidrug-resistant bacteria is necessary to prevent their further spread. | 2017 | 28375698 |
| 1387 | 18 | 0.9754 | Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities. | 2022 | 35625336 |
| 1075 | 19 | 0.9754 | Extended Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria Recovered From an Amazonian Lake Near the City of Belém, Brazil. Aquatic systems have been described as antibiotic resistance reservoirs, where water may act as a vehicle for the spread of resistant bacteria and resistance genes. We evaluated the occurrence and diversity of third generation cephalosporin-resistant gram-negative bacteria in a lake in the Amazonia region. This water is used for human activities, including consumption after appropriate treatment. Eighteen samples were obtained from six sites in October 2014. Water quality parameters were generally within the legislation limits. Thirty-three bacterial isolates were identified as Escherichia (n = 7 isolates), Acinetobacter, Enterobacter, and Klebsiella (n = 5 each), Pseudomonas (n = 4), Shigella (n = 3), and Chromobacterium, Citrobacter, Leclercia, Phytobacter (1 isolate each). Twenty nine out of 33 isolates (88%) were resistant to most beta-lactams, except carbapenems, and 88% (n = 29) were resistant to antibiotics included in at least three different classes. Among the beta-lactamase genes inspected, the bla (CTX-M) was the most prevalent (n = 12 positive isolates), followed by bla (TEM) (n = 5) and bla (SHV) (n = 4). bla (CTX-M-15) (n = 5), bla (CTX-M-14) (n = 1) and bla (CTX-M-2) (n = 1) variants were detected in conserved genomic contexts: bla (CTX-M-15) flanked by ISEcp1 and Orf477; bla (CTX-M-14) flanked by ISEcp1 and IS903; and bla (CTX-M-2) associated to an ISCR element. For 4 strains the transfer of bla (CTX-M) was confirmed by conjugation assays. Compared with the recipient, the transconjugants showed more than 500-fold increases in the MICs of cefotaxime and 16 to 32-fold increases in the MICs of ceftazidime. Two isolates (Escherichia coli APC43A and Acinetobacter baumannii APC25) were selected for whole genome analysis. APC43A was predicted as a E. coli pathogen of the high-risk clone ST471 and serotype O154:H18. bla (CTX-M-15) as well as determinants related to efflux of antibiotics, were noted in APC43A genome. A. baumannii APC25 was susceptible to carbapenems and antibiotic resistance genes detected in its genome were intrinsic determinants (e.g., bla (OXA-208) and bla (ADC-like)). The strain was not predicted as a human pathogen and belongs to a new sequence type. Operons related to metal resistance were predicted in both genomes as well as pathogenicity and resistance islands. Results suggest a high dissemination of ESBL-producing bacteria in Lake Água Preta which, although not presenting characteristics of a strongly impacted environment, contains multi-drug resistant pathogenic strains. | 2019 | 30873145 |