# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9174 | 0 | 0.9950 | Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings. | 2023 | 37268007 |
| 8162 | 1 | 0.9950 | Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed. | 2021 | 34558234 |
| 9173 | 2 | 0.9949 | Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution. | 2023 | 37095190 |
| 9183 | 3 | 0.9947 | Overcoming Bacteriophage Resistance in Phage Therapy. Antibiotic resistance among pathogenic bacteria is one of the most severe global challenges. It is predicted that over ten million lives will be lost annually by 2050. Phage therapy is a promising alternative to antibiotics. However, the ease of development of phage resistance during therapy is a concern. This review focuses on the possible ways to overcome phage resistance in phage therapy. | 2024 | 37966611 |
| 9588 | 4 | 0.9946 | Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents. | 2019 | 30680434 |
| 9172 | 5 | 0.9946 | These Are the Genes You're Looking For: Finding Host Resistance Genes. Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications. | 2021 | 33004258 |
| 8176 | 6 | 0.9945 | Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems. | 2021 | 34307323 |
| 8177 | 7 | 0.9945 | Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance. | 2023 | 38283841 |
| 8164 | 8 | 0.9944 | Antibiotic Resistance - A Cause for Reemergence of Infections. This article can rightly be called 'the rise of the microbial phoenix'; for, all the microbial infections whose doomsday was predicted with the discovery of antibiotics, have thumbed their noses at mankind and reemerged phoenix like. The hubris generated by Sir Alexander Fleming's discovery of Penicillin in 1928, exemplified best by the comment by William H Stewart, the US Surgeon General in 1967, "It is time to close the books on infectious diseases" has been replaced by the realisation that the threat of antibiotic resistance is, in the words of the Chief Medical Officer of England, Dame Sally Davies, "just as important and deadly as climate change and international terrorism". Antimicrobial resistance threatens to negate all the major medical advances of the last century because antimicrobial use is linked to many other fields like organ transplantation and cancer chemotherapy. Antibiotic resistance genes have been there since ancient times in response to naturally occurring antibiotics. Modern medicine has only driven further evolution of antimicrobial resistance by use, misuse, overuse and abuse of antibiotics. Resistant bacteria proliferate by natural selection when their drug sensitive comrades are removed by antibiotics. In this article the authors discuss the various causes of antimicrobial resistance and dwell in some detail on antibiotic resistance in gram-positive and gram-negative organisms. Finally they stress on the important role clinicians have in limiting the development and spread of antimicrobial resistance. | 2020 | 32026301 |
| 9585 | 9 | 0.9944 | When Humans Met Superbugs: Strategies to Tackle Bacterial Resistances to Antibiotics. Bacterial resistance to antibiotics poses enormous health and economic burdens to our society, and it is of the essence to explore old and new ways to deal with these problems. Here we review the current status of multi-resistance genes and how they spread among bacteria. We discuss strategies to deal with resistant bacteria, namely the search for new targets and the use of inhibitors of protein-protein interactions, fragment-based methods, or modified antisense RNAs. Finally, we discuss integrated approaches that consider bacterial populations and their niches, as well as the role of global regulators that activate and/or repress the expression of multiple genes in fluctuating environments and, therefore, enable resistant bacteria to colonize new niches. Understanding how the global regulatory circuits work is, probably, the best way to tackle bacterial resistance. | 2018 | 30811343 |
| 9589 | 10 | 0.9944 | Phage Therapy: Going Temperate? Strictly lytic phages have been consensually preferred for phage therapy purposes. In contrast, temperate phages have been avoided due to an inherent capacity to mediate transfer of genes between bacteria by specialized transduction - an event that may increase bacterial virulence, for example, by promoting antibiotic resistance. Now, advances in sequencing technologies and synthetic biology are providing new opportunities to explore the use of temperate phages for therapy against bacterial infections. By doing so we can considerably expand our armamentarium against the escalating threat of antibiotic-resistant bacteria. | 2019 | 30466900 |
| 8178 | 11 | 0.9944 | Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies. | 2024 | 38510041 |
| 8185 | 12 | 0.9943 | RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent. | 2022 | 34505182 |
| 9184 | 13 | 0.9943 | Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease. | 2023 | 37770168 |
| 9484 | 14 | 0.9943 | Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Antibiotic resistance has reached dangerously high levels throughout the world. A growing number of bacteria pose an urgent, serious, and concerning threat to public health. Few new antibiotics are available to clinicians and only few are in development, highlighting the need for new strategies to overcome the antibiotic resistance crisis. Combining existing antibiotics with phages, viruses the infect bacteria, is an attractive and promising alternative to standalone therapies. Phage-antibiotic combinations have been shown to suppress the emergence of resistance in bacteria, and sometimes even reverse it. Here, we discuss the mechanisms by which phage-antibiotic combinations reduce resistance evolution, and the potential limitations these mechanisms have in steering microbial resistance evolution in a desirable direction. We also emphasize the importance of gaining a better understanding of mechanisms behind physiological and evolutionary phage-antibiotic interactions in complex in-patient environments. | 2021 | 33175408 |
| 9177 | 15 | 0.9943 | Multitarget Approaches against Multiresistant Superbugs. Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them. | 2020 | 32156116 |
| 6672 | 16 | 0.9942 | Antibiotic resistance in bacteria - an emerging public health problem. The discovery and eventual introduction of anti-microbial agents to clinical medicine was one of the greatest medical triumphs of the twentieth century that revolutionized the treatment of bacterial diseases. However, the gradual emergence of populations of antibiotic-resistant bacteria resulting from use, misuse and outright abuse of antibiotics has today become a major public health problem of global proportions. This review paper examines the origins and molecular epidemiology of resistance genes, global picture of antibacterial resistance, factors that favour its spread, strategies for its control, problems of control and the consequences of failure to contain antibiotic resistance in bacteria. | 2003 | 27528961 |
| 9178 | 17 | 0.9942 | Targeting non-multiplying organisms as a way to develop novel antimicrobials. Increasing resistance and decreasing numbers of antibiotics reaching the market point to a growing need for novel antibacterial drugs. Most antibiotics are very inefficient at killing non-multiplying bacteria, which live side by side with multiplying ones of the same strain in a clinical infection. Although non-multiplying bacteria do not usually cause disease, they can revert to the multiplying state that leads to overt disease, at which time resistance can emerge. Here we discuss the concept of developing antibacterial drugs by targeting non-multiplying organisms. We define non-multiplying bacteria, discuss the efficacy of existing antibiotics, and assess whether targeting these bacteria might lead to new antibiotics that will decrease the rate of emergence of resistance. Lastly, we review the potential of new molecular targets and live non-multiplying bacteria as possible routes for the development of novel antimicrobial drugs. | 2008 | 18262665 |
| 9442 | 18 | 0.9942 | Antibiotic resistance. Antibiotic resistance poses serious challenges to health and national security, and policy changes will be required to mitigate the consequences of antibiotic resistance. Resistance can arise in disease-causing bacteria naturally, or it can be deliberately introduced to a biological weapon. In either case, life-saving drugs are rendered ineffective. Resistant bacterial infections are difficult to treat, and there are few new antibiotics in the drug development pipeline. This article describes how antibiotic resistance affects health and national security, how bacteria become antibiotic resistant, and what should be done now so antibiotics will be available to save lives in the future. | 2009 | 20028245 |
| 6654 | 19 | 0.9942 | Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Antimicrobial resistance (AMR) is widely recognised as a considerable threat to human health, wellbeing and prosperity. Many clinically important antibiotic resistance genes are understood to have originated in the natural environment. However, the complex interactions between humans, animals and the environment makes the health implications of environmental AMR difficult to quantify. This narrative review focuses on the current state of knowledge regarding antibiotic resistant bacteria (ARB) in natural bathing waters and implications for human health. It considers the latest research focusing on the transmission of ARB from bathing waters to humans. The limitations of existing evidence are discussed, as well as research priorities. The authors are of the opinion that future studies should include faecally contaminated bathing waters and people exposed to these environments to accurately parameterise environment-to-human transmission. | 2022 | 34739925 |