CLEANING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
306600.9944Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.202134061267
306910.9940The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments.202540483807
657720.9940Evaluating Microbial and Chemical Hazards in Commercial Struvite Recovered from Wastewater. Controlled struvite (NH(4)MgPO(4)·6H(2)O) precipitation has become a well-known process for nutrient recovery from wastewater treatment systems to alleviate the pressures of diminishing, finite rock phosphate reservoirs. Nonetheless, coprecipitation of potential microbial and chemical hazards is poorly understood. On the other hand, antimicrobial resistance (AMR) is a major global public health concern and wastewater is thought to disseminate resistance genes within bacteria. Fecal indicator bacteria (FIB) are typically used as measures of treatment quality, and with multiresistant E. coli and Enterococcus spp. rising in concern, the quantification of FIB can be used as a preliminary method to assess the risk of AMR. Focusing on struvite produced from full-scale operations, culture and qPCR methods were utilized to identify FIB, antibiotic resistance genes, and human enteric viruses in the final product. Detection of these hazards occurred in both wet and dry struvite samples indicating that there is a potential risk that needs further consideration. Chemical and biological analyses support the idea that the presence of other wastewater components can impact struvite formation through ion and microbial interference. While heavy metal concentrations met current fertilizer standards, the presence of K, Na, Ca, and Fe ions can impact struvite purity yet provide benefit for agricultural uses. Additionally, the quantified hazards detected varied among struvite samples produced from different methods and sources, thus indicating that production methods could be a large factor in the risk associated with wastewater-recovered struvite. In all, coprecipitation of metals, fecal indicator bacteria, antimicrobial resistance genes, and human enteric viruses with struvite was shown to be likely, and future engineered wastewater systems producing struvite may require additional step(s) to manage these newly identified public health risks.201930964655
322030.9939Metabolically-active bacteria in reclaimed water and ponds revealed using bromodeoxyuridine DNA labeling coupled with 16S rRNA and shotgun sequencing. Understanding the complex microbiota of agricultural irrigation water is vital to multiple sectors of sustainable agriculture and public health. To date, microbiome characterization methods have provided comprehensive profiles of aquatic microbiotas, but have not described which taxa are likely metabolically-active. Here, we combined 5‑bromo‑2'-deoxyuridine (BrdU) labeling with 16S rRNA and shotgun sequencing to identify metabolically-active bacteria in reclaimed and agricultural pond water samples (n = 28) recovered from the Mid-Atlantic United States between March 2017 and January 2018. BrdU-treated samples were significantly less diverse (alpha diversity) compared to non-BrdU-treated samples. The most abundant taxa in the metabolically-active fraction of water samples (BrdU-treated samples) were unclassified Actinobacteria, Flavobacterium spp., Pseudomonas spp. and Aeromonas spp. Interestingly, we also observed that antimicrobial resistance and virulence gene profiles seemed to be more diverse and more abundant in non-BrdU-treated water samples compared to BrdU-treated samples. These findings raise the possibility that these genes may be associated more with relic (inactive) DNA present in the tested water types rather than viable, metabolically-active microorganisms. Our study demonstrates that the coupled use of BrdU labeling and sequencing can enhance understanding of the metabolically-active fraction of bacterial communities in alternative irrigation water sources. Agricultural pond and reclaimed waters are vital to the future of sustainable agriculture, and thus, the full understanding of the pathogenic potential of these waters is important to guide mitigation strategies that ensure appropriate water quality for intended purposes.202032726735
772740.9939Psychrotrophic Bacteria Equipped with Virulence and Colonization Traits Populate the Ice Cream Manufacturing Environment. Several microbial taxa have been associated with food processing facilities, and they might resist by attaching on tools and equipment even after sanitation procedures, producing biofilms that adhere to the surfaces and might embed other microorganisms, including spoilers and pathogens. There is increasing evidence that these communities can be transferred to the final product. To explore the microbial contamination routes in a facility producing ice creams, we collected foods and environmental swabs from industrial surfaces of equipment and tools and performed taxonomic and functional analyses of the microbial DNA extracted from the environmental samples. Our results suggest that complex communities dominated by psychrotrophic bacteria (e.g., Pseudomonas and Acinetobacter spp.) inhabit the food processing environment, and we demonstrate that these communities might be transferred from the surfaces to the products. Functional analysis performed on environmental samples highlighted the presence of several genes linked to antimicrobial resistance and adherence on abiotic surfaces; such genes were more abundant on food contact (FC) than on other surfaces. Metagenome-assembled genomes (MAGs) of Pseudomonas stutzeri showed genes linked with biofilm formation and motility, which are surely linked to colonizing capabilities in the processing lines. The study highlights clear potential advantages of applying microbiome mapping in the food industry for source tracking of microbial contamination and for planning appropriate ad hoc sanitization strategies. IMPORTANCE Several microbial species might permanently establish in food processing facilities, thus contributing to food loss. In fact, food contact surfaces might transfer microorganisms to intermediates and products, potentially representing a hazard to human health. In this work, we provide evidence of the existence of complex microbial communities overcoming sanitation in an ice cream-producing facility. These communities harbored several genes that could potentially lead to attachment to surfaces and antimicrobial resistance. Also, prediction of routes of contamination showed that several potential spoilage taxa might end up in the final product. Importantly, in this work, we show that mapping the environmental microbiome is a high-resolution technique that might help food business operators ensure food quality and safety through detection of potentially hazardous microorganisms.202337432121
658050.9939Transmission of antimicrobial resistance (AMR) during animal transport. The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.202236304831
354860.9937From flagellar assembly to DNA replication: CJSe's role in mitigating microbial antibiotic resistance genes. The emergence of Antibiotic Resistance Genes (ARGs) in Campylobacter jejuni (CJ) poses a severe threat to food safety and human health. However, the specific impact of CJ and its variants on ARGs and other related factors remains to be further elucidated. Herein, integrated metagenomic sequencing and co-occurrence network analysis approach were employed to investigate the impact of CJ and CJ incorporated with biogenic selenium (CJSe) on ARGs, flagellar assembly pathways, microbial communities, and DNA replication pathways in chicken manure. Compared to the Control (CON) and CJ groups, the CJSe group exhibited 2.4-fold increase selenium levels (P < 0.01) in chicken manure. Notable differences were also observed between the CJ and CJSe groups, with sequence results showing a CJ > CJSe > CON trend in total ARG copy numbers. Furthermore, the CJSe group showed 31.6 % fewer flagellar assembly genes compared to the CJ group. Additionally, compared to the CJ group, CJSe inhibited pathways such as basal body/hook (e.g., FliH, FliO, FliQ reduced by 25-52 %) and stator (MotB downregulated by 42.3 %), suppressing flagellar assembly. We also found that both CJ and CJSe influenced bacterial DNA replication pathways, with the former increasing ARG-carrying bacteria and the latter, under selenium-induced selective pressure, reducing ARG-carrying bacteria. Moreover, compared to the CJ group, the CJSe group showed a significantly lower 9.72 % copy number of total archaeal DNA replication genes. Furthermore, through intricate co-occurrence network analysis, we discovered the complex interplay between changes in ARGs and bacterial and archaeal DNA replication dynamics within the microbial community. These findings indicate that CJSe mitigates the threat posed by CJ and reduces ARG prevalence, while its dual functionality enables applications in biofortified crop production and soil remediation in selenium-deficient regions, thereby advancing circular economy systems. While the current study demonstrates CJSe's dual functionality under controlled conditions, future work will implement a dedicated ecological risk assessment framework encompassing Se speciation/leaching tests and non-target organism assays to confirm environmental safety under field-relevant scenarios. This approach aligns with sustainable strategies for food security and public health safeguarding.202541108960
664870.9937Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.201829946253
766180.9937Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.202336951567
664990.9936 The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action.200232687288
7691100.9936Antimicrobial Chemicals Associate with Microbial Function and Antibiotic Resistance Indoors. Humans purposefully and inadvertently introduce antimicrobial chemicals into buildings, resulting in widespread compounds, including triclosan, triclocarban, and parabens, in indoor dust. Meanwhile, drug-resistant infections continue to increase, raising concerns that buildings function as reservoirs of, or even select for, resistant microorganisms. Support for these hypotheses is limited largely since data describing relationships between antimicrobials and indoor microbial communities are scant. We combined liquid chromatography-isotope dilution tandem mass spectrometry with metagenomic shotgun sequencing of dust collected from athletic facilities to characterize relationships between indoor antimicrobial chemicals and microbial communities. Elevated levels of triclosan and triclocarban, but not parabens, were associated with distinct indoor microbiomes. Dust of high triclosan content contained increased Gram-positive species with diverse drug resistance capabilities, whose pangenomes were enriched for genes encoding osmotic stress responses, efflux pump regulation, lipid metabolism, and material transport across cell membranes; such triclosan-associated functional shifts have been documented in laboratory cultures but not yet from buildings. Antibiotic-resistant bacterial isolates were cultured from all but one facility, and resistance often increased in buildings with very high triclosan levels, suggesting links between human encounters with viable drug-resistant bacteria and local biocide conditions. This characterization uncovers complex relationships between antimicrobials and indoor microbiomes: some chemicals elicit effects, whereas others may not, and no single functional or resistance factor explained chemical-microbe associations. These results suggest that anthropogenic chemicals impact microbial systems in or around buildings and their occupants, highlighting an emergent need to identify the most important indoor, outdoor, and host-associated sources of antimicrobial chemical-resistome interactions. IMPORTANCE The ubiquitous use of antimicrobial chemicals may have undesired consequences, particularly on microbes in buildings. This study shows that the taxonomy and function of microbes in indoor dust are strongly associated with antimicrobial chemicals-more so than any other feature of the buildings. Moreover, we identified links between antimicrobial chemical concentrations in dust and culturable bacteria that are cross-resistant to three clinically relevant antibiotics. These findings suggest that humans may be influencing the microbial species and genes that are found indoors through the addition and removal of particular antimicrobial chemicals.201830574558
6794110.9936Beyond cyanotoxins: increased Legionella, antibiotic resistance genes in western Lake Erie water and disinfection-byproducts in their finished water. BACKGROUND: Western Lake Erie is suffering from harmful cyanobacterial blooms, primarily toxic Microcystis spp., affecting the ecosystem, water safety, and the regional economy. Continued bloom occurrence has raised concerns about public health implications. However, there has been no investigation regarding the potential increase of Legionella and antibiotic resistance genes in source water, and disinfection byproducts in municipal treated drinking water caused by these bloom events. METHODS: Over 2 years, source water (total n = 118) and finished water (total n = 118) samples were collected from drinking water plants situated in western Lake Erie (bloom site) and central Lake Erie (control site). Bloom-related parameters were determined, such as microcystin (MC), toxic Microcystis, total organic carbon, N, and P. Disinfection byproducts (DBPs) [total trihalomethanes (THMs) and haloacetic acids (HAAs)] were assessed in finished water. Genetic markers for Legionella, antibiotic resistance genes, and mobile genetic elements were quantified in source and finished waters. RESULTS: Significantly higher levels of MC-producing Microcystis were observed in the western Lake Erie site compared to the control site. Analysis of DBPs revealed significantly elevated THMs concentrations at the bloom site, while HAAs concentrations remained similar between the two sites. Legionella spp. levels were significantly higher in the bloom site, showing a significant relationship with total cyanobacteria. Abundance of ARGs (tetQ and sul1) and mobile genetic elements (MGEs) were also significantly higher at the bloom site. DISCUSSION: Although overall abundance decreased in finished water, relative abundance of ARGs and MGE among total bacteria increased after treatment, particularly at the bloom site. The findings underscore the need for ongoing efforts to mitigate bloom frequency and intensity in the lake. Moreover, optimizing water treatment processes during bloom episodes is crucial to maintain water quality. The associations observed between bloom conditions, ARGs, and Legionella, necessitate future investigations into the potential enhancement of antibiotic-resistant bacteria and Legionella spp. due to blooms, both in lake environments and drinking water distribution systems.202337700867
2542120.9936Bacterial colonization and antimicrobial resistance genes in neonatal enteral feeding tubes. Enteral feeding is a key component of care in neonatal intensive care units (NICUs); however, feeding tubes harbor microbes. These microbes have the potential to cause disease, yet their source remains controversial and clinical recommendations to reduce feeding tube colonization are lacking. This study aims to improve our understanding of the bacteria in neonatal feeding tubes and to evaluate factors that may affect these bacteria. 16S rRNA gene sequencing was used to characterize the bacteria present in pharyngeal, esophageal, and gastric portions of feeding tubes, residual fluid of the tubes, and infant stool using samples from 47 infants. Similar distributions of taxa were observed in all samples, although beta diversity differed by sample type. Feeding tube samples had lower alpha diversity than stool samples, and alpha diversity increased with gestational age, day of life, and tube dwell time. In a subset of samples from 6 infants analyzed by whole metagenome sequencing, there was greater overlap in transferable antimicrobial resistance genes between tube and fecal samples in breast milk fed infants than in formula fed infants. These findings develop our understanding of neonatal feeding tube colonization, laying a foundation for research into methods for minimizing NICU patients' exposure to antimicrobial resistant microbes.201930915455
7726130.9936Distribution and comparison of bacterial communities in HVAC systems of two university buildings: Implications for indoor air quality and public health. The installation of HVAC systems in building is meant to enhance indoor air quality as well as increase comfort to occupants. However, HVAC systems have also become a vehicle of contamination of indoor air with potentially pathogenic microorganisms. DNA was extracted from ten HVAC filter dust samples collected from two buildings and subjected to high throughput sequencing analysis to determine the bacterial community structure. Further, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) software was used to predict the potential functional capabilities of the bacterial communities. Sequencing analysis led to the identification of five major bacterial phyla, including Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes and Bacteroidetes. At genus level, Mycobacterium, Bacillus, Cupriavidus, Hyphomicrobium and Mesorhizobium were the most dominant. With the exception of the later two bacterial genera, the first three are potential pathogens whose presence in HVAC systems poses a significant public health risk, especially among immunocompromised individuals. Nine pathways associated with antibiotics resistance and bacterial pathogenicity were identified, including polymyxin resistance and peptidoglycan biosynthesis pathways. Further, investigation of the relationship between the detected bacterial meta-communities and predicted potential virulence factors (antibiotic resistance and pathogenic genes) led to the detection of 350 positive associations among 43 core bacteria, 2 pathogenic genes (sitA and uidA) and 14 resistance genes. Overall, the heterogeneous nature of microorganisms found in HVAC systems observed in this study shows that HVAC systems are the origin of airborne infections in indoor environments, and must be periodically cleaned and disinfected to avoid the build-up of pathogens, and the subsequent exposure of human occupants of these pathogens.202133415530
7488140.9936Metagenomic insights into microorganisms and antibiotic resistance genes of waste antibiotic fermentation residues along production, storage and treatment processes. Antibiotic fermentation residue (AFR) is nutrient-rich solid waste generated from fermentative antibiotic production process. It is demonstrated that AFR contains high-concentration of remaining antibiotics, and thus may promote antibiotic resistance development in receiving environment or feeding farmed animals. However, the dominate microorganisms and antibiotic resistance genes (ARGs) in AFRs have not been adequately explored, hampering understanding on the potential antibiotic resistance risk development caused by AFRs. Herein, seven kinds of representative AFRs along their production, storage, and treatment processes were collected, and multiple methods including amplicon sequencing, metagenomic sequencing, and bioinformatic approaches were adopted to explore the biological characteristics of AFRs. As expected, antibiotic fermentation producer was found as the predominant species in raw AFRs, which were collected at the outlet of fermentation tanks. However, except for producer species, more environment-derived species persisted in stored AFRs, which were temporarily stored at a semi-open space. Lactobacillus genus, classified as Firmicutes phylum and Bacilli class, became predominant bacterial taxa in stored AFRs, which might attribute to its tolerance to high concentration of antibiotics. Results from metagenomic sequencing together with assembly and binning approaches showed that these newly-colonizing species (e.g., Lactobacillus genus) tended to carry ARGs conferring resistance to the remaining antibiotic. However, after thermal treatment, remaining antibiotic could be efficiently removed from AFRs, and microorganisms together with DNA could be strongly destroyed. In sum, the main risk from the AFRs was the remaining antibiotic, while environment-derived bacteria which tolerate extreme environment, survived in ARFs with high content antibiotics, and may carry ARGs. Thus, hydrothermal or other harmless treatment technologies are recommended to remove antibiotic content and inactivate bacteria before recycling of AFRs in pharmaceutical industry.202437923454
3223150.9936A cross-sectional comparison of gut metagenomes between dairy workers and community controls. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers.202439033279
7131160.9935Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract.202336850017
3156170.9935Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain. We aimed to better understand resistome and virulome patterns on animal and process-area surfaces through a pig slaughterhouse to track possible contamination within the food production chain. Culture-dependent methods revealed high levels of microbial contamination, corresponding to mesophilic and pathogenic bacteria on both the animal and process-area surfaces mainly in the anesthesia (AA and AS) zone followed by "scorching and whip" (FA and FS) zone and also in the end products. To evaluate the potential risk of antibiotic resistance and virulence determinants, shotgun metagenomic DNA-sequencing of isolates from selected areas/products uncovered a high diversity and richness of antibiotic resistance genes (ARGs): 55-62 genes in the anesthesia area (AA and AS) and 35-40 in "animal-arrival zone" (MA and MS). The "scorching and whip" (FA and FS) area, however, exhibited lowered abundance of ARGs (1-6), indicating that the scalding and depilating process (an intermediate zone between "anesthesia" and "scorching and whip") significantly decreased bacterial load by 1-3 log(10) but also diminished the resistome. The high prevalence of antibiotic-inactivating enzyme genes in the "animal-arrival zone" (60-65%) and "anesthesia" area (56%) were mainly represented by those for aminoglycoside (46-51%) and lincosamide (14-19%) resistance, which did not reflect selective pressures by antibiotics most commonly used in pig therapy-tetracyclines and beta-lactams. Contrary to ARGs, greater number of virulence resistance genes were detected after evisceration in some products such as kidney, which reflected the poor hygienic practices. More than 19 general virulence features-mainly adherence, secretion system, chemotaxis and motility, invasion and motility were detected in some products. However, immune evasion determinants were detected in almost all samples analyzed from the beginning of the process, with highest amounts found from the anesthesia area. We conclude that there are two main sources of contamination in a pig slaughterhouse: the microorganisms carried on the animals' hide, and those from the evisceration step. As such, focussing control measures, e.g., enhanced disinfection procedures, on these contamination-source areas may reduce risks to food safety and consumer health, since the antibiotic and virulence determinants may spread to end products and the environment; further, ARG and virulence traits can exacerbate pathogen treatments.201830258416
7080180.9935Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. BACKGROUND: Emergence and spread of antibiotic resistance has become a global health threat and is often linked with overuse and misuse of clinical and veterinary chemotherapeutic agents. Modern industrial-scale animal feeding operations rely extensively on veterinary pharmaceuticals, including antibiotics, to augment animal growth. Following excretion, antibiotics are transported through the environment via runoff, leaching, and land application of manure; however, airborne transport from feed yards has not been characterized. OBJECTIVES: The goal of this study was to determine the extent to which antibiotics, antibiotic resistance genes (ARG), and ruminant-associated microbes are aerially dispersed via particulate matter (PM) derived from large-scale beef cattle feed yards. METHODS: PM was collected downwind and upwind of 10 beef cattle feed yards. After extraction from PM, five veterinary antibiotics were quantified via high-performance liquid chromatography with tandem mass spectrometry, ARG were quantified via targeted quantitative polymerase chain reaction, and microbial community diversity was analyzed via 16S rRNA amplification and sequencing. RESULTS: Airborne PM derived from feed yards facilitated dispersal of several veterinary antibiotics, as well as microbial communities containing ARG. Concentrations of several antibiotics in airborne PM immediately downwind of feed yards ranged from 0.5 to 4.6 μg/g of PM. Microbial communities of PM collected downwind of feed yards were enriched with ruminant-associated taxa and were distinct when compared to upwind PM assemblages. Furthermore, genes encoding resistance to tetracycline antibiotics were significantly more abundant in PM collected downwind of feed yards as compared to upwind. CONCLUSIONS: Wind-dispersed PM from feed yards harbors antibiotics, bacteria, and ARGs.201525633846
3973190.9935Assessing the impact of sewage and wastewater on antimicrobial resistance in nearshore Antarctic biofilms and sediments. BACKGROUND: Despite being recognised as a global problem, our understanding of human-mediated antimicrobial resistance (AMR) spread to remote regions of the world is limited. Antarctica, often referred to as "the last great wilderness", is experiencing increasing levels of human visitation through tourism and expansion of national scientific operations. Therefore, it is critical to assess the impact that these itinerant visitors have on the natural environment. This includes monitoring human-mediated AMR, particularly around population concentrations such as visitor sites and Antarctic research stations. This study takes a sequencing discovery-led approach to investigate levels and extent of AMR around the Rothera Research Station (operated by the UK) on the Antarctic Peninsula. RESULTS: Amplicon sequencing of biofilms and sediments from the vicinity of Rothera Research Station revealed highly variable and diverse microbial communities. Analysis of AMR genes generated from long-reads Nanopore MinION sequencing showed similar site variability in both drug class and resistance mechanism. Thus, no site sampled was more or less diverse than the other, either in the biofilm or sediment samples. Levels of enteric bacteria in biofilm and sediment samples were low at all sites, even in biofilm samples taken from the station sewage treatment plant (STP). It would appear that incorporation of released enteric bacteria in wastewater into more established biofilms or associations with sediment was poor. This was likely due to the inactivation and vulnerability of these bacteria to the extreme environmental conditions in Antarctica. CONCLUSIONS: Our results suggest minimal effect of a strong feeder source (i.e. sewage effluent) on biofilm and sediment microbial community composition, with each site developing its unique niche community. The factors producing these niche communities need elucidation, alongside studies evaluating Antarctic microbial physiologies. Our data from cultivated bacteria show that they are highly resilient to different environmental conditions and are likely to thrive in a warmer world. Our data show that AMR in the Antarctic marine environment is far more complex than previously thought. Thus, more work is required to understand the true extent of the Antarctic microbiota biodiversity, their associated resistomes and the impact that human activities have on the Antarctic environment.202539833981