# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8433 | 0 | 0.8675 | Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. Overuse of antibiotics can increase the risk of notorious antibiotic resistance in bacteria, which has become a growing public health concern worldwide. Featured with the merit of mechanical rupture of bacterial cells, the bioinspired nanopillars are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the resident dead bacterial cells on nanopillars may greatly impair their bactericidal capability and ultimately impede their translational potential toward long-term applications. Here, we show that the functions of bactericidal nanopillars can be significantly broadened by developing a hybrid thermoresponsive polymer@nanopillar-structured surface, which retains all of the attributes of pristine nanopillars and adds one more: releasing dead bacteria. We fabricate this surface through coaxially decorating mechano-bactericidal ZnO nanopillars with thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes. Combining the benefits of ZnO nanopillars and PNIPAAm chains, the antibacterial performances can be controllably regulated between ultrarobust mechano-bactericidal action (∼99%) and remarkable bacteria-releasing efficiency (∼98%). Notably, both the mechanical sterilization against the live bacteria and the controllable release for the pinned dead bacteria solely stem from physical actions, stimulating the exploration of intelligent structure-based bactericidal surfaces with persistent antibacterial properties without the risk of triggering drug resistance. | 2021 | 34905683 |
| 8832 | 1 | 0.8653 | Pharyngeal Pumping and Tissue-Specific Transgenic P-Glycoprotein Expression Influence Macrocyclic Lactone Susceptibility in Caenorhabditis elegans. Macrocyclic lactones (MLs) are widely used drugs to treat and prevent parasitic nematode infections. In many nematode species including a major pathogen of foals, Parascaris univalens, resistance against MLs is widespread, but the underlying resistance mechanisms and ML penetration routes into nematodes remain unknown. Here, we examined how the P-glycoprotein efflux pumps, candidate genes for ML resistance, can modulate drug susceptibility and investigated the role of active drug ingestion for ML susceptibility in the model nematode Caenorhabditis elegans. Wildtype or transgenic worms, modified to overexpress P. univalens PGP-9 (Pun-PGP-9) at the intestine or epidermis, were incubated with ivermectin or moxidectin in the presence (bacteria or serotonin) or absence (no specific stimulus) of pharyngeal pumping (PP). Active drug ingestion by PP was identified as an important factor for ivermectin susceptibility, while moxidectin susceptibility was only moderately affected. Intestinal Pun-PGP-9 expression elicited a protective effect against ivermectin and moxidectin only in the presence of PP stimulation. Conversely, epidermal Pun-PGP-9 expression protected against moxidectin regardless of PP and against ivermectin only in the absence of active drug ingestion. Our results demonstrate the role of active drug ingestion by nematodes for susceptibility and provide functional evidence for the contribution of P-glycoproteins to ML resistance in a tissue-specific manner. | 2021 | 33668460 |
| 110 | 2 | 0.8652 | Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit. | 2002 | 12417742 |
| 8958 | 3 | 0.8640 | Exogenous Citrulline and Glutamine Contribute to Reverse the Resistance of Salmonella to Apramycin. Antibiotic resistance is an increasing concern for human and animal health worldwide. Recently, the concept of reverting bacterial resistance by changing the metabolic state of antibiotic-resistant bacteria has emerged. In this study, we investigated the reversal of Apramycin resistance in Salmonella. First, non-targeted metabonomics were used to identify key differential metabolites of drug-resistant bacteria. Then, the reversal effect of exogenous substances was verified in vivo and in vitro. Finally, the underlying mechanism was studied. The results showed that the metabolites citrulline and glutamine were significantly reduced in Apramycin-resistant Salmonella. When citrulline and glutamine were added to the culture medium of drug-resistant Salmonella, the killing effect of Apramycin was restored markedly. Mechanistic studies showed that citrulline and glutamine promoted the Tricarboxylic acid cycle, produced more NADH in the bacteria, and increased the proton-motive force, thus promoting Apramycin entry into the bacterial cells, and killing the drug-resistant bacteria. This study provides a useful method to manage infections by antibiotic-resistant bacteria. | 2021 | 34721368 |
| 6005 | 4 | 0.8634 | Antimicrobial activity of Pediococcus pentosaceus strains against diarrheal pathogens isolated from pigs and effect on paracellular permeability of HT-29 cells. This study aimed to investigate lactic acid bacteria with antimicrobial activities against infectious diarrheal pathogens in pigs and their genetic characteristics. Acid-resistant lactic acid bacteria were examined for bile resistance, pancreatic enzyme resistance, gelatinase and urease activities, and antibiotic resistance. Subsequently, selected isolates were examined for antimicrobial activities against Campylobacter coli, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium, and their effects on paracellular permeability and the expression of tight junction protein-encoding genes in HT-29 cells were assessed. Whole genome sequencing was performed to identify the genes related to safety and antibacterial activity. Of the 51 isolates examined, 12 were resistant to bile and pancreatin and did not produce gelatinase and urease. Of these 12, isolates 19, 20, 30, 36, and 67 showed tetracycline resistance and isolates 15, 19, and 38W showed antimicrobial activity against infectious diarrheal bacteria. Treatment with isolate 38W significantly reduced the paracellular permeability induced by E. coli in HT-29 cells and alleviated the expression of tight junction protein-encoding genes (claudin-1, occludin, and ZO-1) induced by E. coli inoculation. Isolates 15, 19, and 38W were named as Pediococcus pentosaceus SMFM2016-NK1, SMFM2016-YK1, and SMFM2016-WK1, respectively. Bacteriocin-related genes were YheH, ytrF, BceA, BceB, and MccF in SMFM2016-NK1; YheH, ytrF, BceA, BceB, entK, lcnA, MccF, and skgD in SMFM2016-YK1; and YheH, ytrF, BceA, BceB, and MccF in SMFM2016-WK1. SMFM2016-YK1 harbored the tetM gene. These results indicate that P. pentosaceus SMFM2016-WK1 might control diarrheal pathogens isolated from pigs. However, a further study is necessary because the results were obtained only from in vitro experiment. | 2025 | 40873998 |
| 46 | 5 | 0.8625 | The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99(A) (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. | 2018 | 29603592 |
| 615 | 6 | 0.8621 | Escherichia coli RclA is a highly active hypothiocyanite reductase. Hypothiocyanite and hypothiocyanous acid (OSCN(-)/HOSCN) are pseudohypohalous acids released by the innate immune system which are capable of rapidly oxidizing sulfur-containing amino acids, causing significant protein aggregation and damage to invading bacteria. HOSCN is abundant in saliva and airway secretions and has long been considered a highly specific antimicrobial that is nearly harmless to mammalian cells. However, certain bacteria, commensal and pathogenic, are able to escape damage by HOSCN and other harmful antimicrobials during inflammation, which allows them to continue to grow and, in some cases, cause severe disease. The exact genes or mechanisms by which bacteria respond to HOSCN have not yet been elucidated. We have found, in Escherichia coli, that the flavoprotein RclA, previously implicated in reactive chlorine resistance, reduces HOSCN to thiocyanate with near-perfect catalytic efficiency and strongly protects E. coli against HOSCN toxicity. This is notable in E. coli because this species thrives in the chronically inflamed environment found in patients with inflammatory bowel disease and is able to compete with and outgrow other important commensal organisms, suggesting that HOSCN may be a relevant antimicrobial in the gut, which has not previously been explored. RclA is conserved in a variety of epithelium-colonizing bacteria, implicating its HOSCN reductase activity in a variety of host-microbe interactions. We show that an rclA mutant of the probiotic Limosilactobacillus reuteri is sensitive to HOSCN and that RclA homologs from Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides thetaiotaomicron all have potent protective activity against HOSCN when expressed in E. coli. | 2022 | 35867824 |
| 507 | 7 | 0.8620 | Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Seven species of obligately aerobic photosynthetic bacteria of the genera Erythromicrobium, Erythrobacter, and Roseococcus demonstrated high-level resistance to tellurite and accumulation of metallic tellurium crystals. High-level resistance without tellurite reduction was observed for Roseococcus thiosulfatophilus and Erythromicrobium ezovicum grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance. | 1996 | 16535446 |
| 616 | 8 | 0.8613 | Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection. | 2009 | 19890048 |
| 4 | 9 | 0.8613 | Bacteria deplete deoxynucleotides to defend against bacteriophage infection. DNA viruses and retroviruses consume large quantities of deoxynucleotides (dNTPs) when replicating. The human antiviral factor SAMHD1 takes advantage of this vulnerability in the viral lifecycle, and inhibits viral replication by degrading dNTPs into their constituent deoxynucleosides and inorganic phosphate. Here, we report that bacteria use a similar strategy to defend against bacteriophage infection. We identify a family of defensive bacterial deoxycytidine triphosphate (dCTP) deaminase proteins that convert dCTP into deoxyuracil nucleotides in response to phage infection. We also identify a family of phage resistance genes that encode deoxyguanosine triphosphatase (dGTPase) enzymes, which degrade dGTP into phosphate-free deoxyguanosine and are distant homologues of human SAMHD1. Our results suggest that bacterial defensive proteins deplete specific deoxynucleotides (either dCTP or dGTP) from the nucleotide pool during phage infection, thus starving the phage of an essential DNA building block and halting its replication. Our study shows that manipulation of the dNTP pool is a potent antiviral strategy shared by both prokaryotes and eukaryotes. | 2022 | 35817891 |
| 54 | 10 | 0.8612 | Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance. | 2022 | 35563637 |
| 8746 | 11 | 0.8610 | Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops. | 2023 | 36835053 |
| 8147 | 12 | 0.8605 | Stimulation of the Defense Mechanisms of Potatoes to a Late Blight Causative Agent When Treated with Bacillus subtilis Bacteria and Chitosan Composites with Hydroxycinnamic Acids. Phytophthora infestans is, worldwide, one of the main causal agents of epiphytotics in potato plantings. Prevention strategies demand integrated pest management, including modeling of beneficial microbiomes of agroecosystems combining microorganisms and natural products. Chitooligosaccharides and their derivatives have great potential to be used by agrotechnology due to their ability to elicit plant immune reactions. The effect of combining Bacillus subtilis 26D and 11VM and conjugates of chitin with hydroxycinnamates on late blight pathogenesis was evaluated. Mechanisms for increasing the resistance of potato plants to Phytophthora infestans were associated with the activation of the antioxidant system of plants and an increase in the level of gene transcripts that encode PR proteins: basic protective protein (PR-1), thaumatin-like protein (PR-5), protease inhibitor (PR-6), and peroxidase (PR-9). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of the combined treatment of plants with B. subtilis and conjugates of chitin with hydroxycinnamates indicates that, in this case, the development of protective reactions in potato plants to late blight proceeds synergistically, where B. subtilis primes protective genes, and chitosan composites act as a trigger for their expression. | 2023 | 37630553 |
| 35 | 13 | 0.8605 | Gluconacetobacter diazotrophicus Elicits a Sugarcane Defense Response Against a Pathogenic Bacteria Xanthomonas albilineans. A new role for the plant growth-promoting nitrogen-fixing endophytic bacteria Gluconacetobacter diazotrophicus has been identified and characterized while it is involved in the sugarcane-Xanthomonas albilineans pathogenic interactions. Living G.diazotrophicus possess and/or produce elicitor molecules which activate the sugarcane defense response resulting in the plant resistance to X. albilineans, in this particular case controlling the pathogen transmission to emerging agamic shoots. A total of 47 differentially expressed transcript derived fragments (TDFs) were identified by cDNA-AFLP. Transcripts showed significant homologies to genes of the ethylene signaling pathway (26%), proteins regulates by auxins (9%), beta-1,3 Glucanase proteins (6%) and ubiquitin genes (4%), all major signaling mechanisms. Results point toward a form of induction of systemic resistance in sugarcane-G. diazotrophicus interactions which protect the plant against X. albilineans attack. | 2006 | 19516988 |
| 647 | 14 | 0.8605 | Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Cathelicidin antimicrobial peptides are effectors of innate immune defense in mammals. Humans and mice have only one cathelicidin gene, whereas domesticated mammals such as the pig, cow, and horse have multiple cathelicidin genes. We hypothesized that the evolution of multiple cathelicidin genes provides these animals with enhanced resistance to infection. To test this, we investigated the effects of the addition of cathelicidins by combining synthetic cathelicidin peptides in vitro, by producing human keratinocytes that overexpress cathelicidins in culture, or by producing transgenic mice that constitutively overexpress cathelicidins in vivo. The porcine cathelicidin peptide PR-39 acted additively with human cathelicidin LL-37 to kill group A Streptococcus (GAS). Lentiviral delivery of PR-39 enhanced killing of GAS by human keratinocytes. Finally, transgenic mice expressing PR-39 under the influence of a K14 promoter showed increased resistance to GAS skin infection (50% smaller necrotic ulcers and 60% fewer surviving bacteria). Similarly constructed transgenic mice designed to overexpress their native cathelicidin did not show increased resistance. These findings demonstrate that targeted gene transfer of a xenobiotic cathelicidin confers resistance against infection and suggests the benefit of duplication and divergence in the evolution of antimicrobial peptides. | 2005 | 15728389 |
| 3 | 15 | 0.8605 | Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens. | 2015 | 25646457 |
| 9058 | 16 | 0.8605 | Antisense Agents against Antibiotic-resistant Bacteria. The dramatically increasing levels of antibiotic resistance are being seen worldwide and are a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-related technologies include oligonucleotides that interfere with gene transcription and expression; these oligonucleotides can help treat antibiotic-resistant bacteria. The important oligonucleotides include Peptide Nucleic Acids (PNAs), Phosphorodiamidate Morpholino Oligomers (PPMOs), and Locked Nucleic Acids (LNAs). Typically, the size of these structures (oligonucleotides) is 10 to 20 bases. PNAs, PPMOs, and LNAs are highlighted in this review as targets for genes that cause the gene to be destroyed and impede bacterial growth. These results open a new perspective for therapeutic intervention. Future studies need to examine different aspects of antisense agents, such as the safety, toxicity, and pharmacokinetic properties of antisense agents in clinical treatment. | 2022 | 35034590 |
| 608 | 17 | 0.8603 | Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF. | 2021 | 34439488 |
| 6390 | 18 | 0.8602 | Shotgun metagenome sequencing of a Sudanese toombak snuff tobacco: genetic attributes of a high tobacco-specific nitrosamine containing smokeless tobacco product. The most alarming aspect of the Sudanese toombak smokeless tobacco is that it contains high levels of highly toxic tobacco-specific nitrosamines (TSNAs). Understanding the microbiology of toombak is of relevance because TSNAs are an indirect result of microbial-mediated nitrate reductions. We conducted shotgun metagenomic sequencing on a toombak product for which relevant features are presented here. The microbiota was composed of over 99% Bacteria. The most abundant taxa included Actinobacteria, specifically the genera Enteractinococcus and Corynebacterium, while Firmicutes were represented by the family Bacillaceae and the genus Staphylococcus. Selected gene targets were nitrate reduction and transport, antimicrobial resistance, and other genetic transference mechanisms. Canonical nitrate reduction and transport genes (i.e. nar) were found for Enteractinococcus and Corynebacterium while various species of Staphylococcus exhibited a notable number of antimicrobial resistance and genetic transference genes. The nitrate reduction activity of the microbiota in toombak is suspected to be a contributing factor to its high levels of TSNAs. Additionally, the presence of antimicrobial resistance and transference genes could contribute to deleterious effects on oral and gastrointestinal health of the end user. Overall, the high toxicity and increased incidences of cancer and oral disease of toombak users warrants further investigation into the microbiology of toombak. | 2022 | 34862647 |
| 17 | 19 | 0.8601 | Biocontrol Potential of Endophytic Plant-Growth-Promoting Bacteria against Phytopathogenic Viruses: Molecular Interaction with the Host Plant and Comparison with Chitosan. Endophytic plant-growth-promoting bacteria (ePGPB) are interesting tools for pest management strategies. However, the molecular interactions underlying specific biocontrol effects, particularly against phytopathogenic viruses, remain unexplored. Herein, we investigated the antiviral effects and triggers of induced systemic resistance mediated by four ePGPB (Paraburkholderia fungorum strain R8, Paenibacillus pasadenensis strain R16, Pantoea agglomerans strain 255-7, and Pseudomonas syringae strain 260-02) against four viruses (Cymbidium Ring Spot Virus-CymRSV; Cucumber Mosaic Virus-CMV; Potato Virus X-PVX; and Potato Virus Y-PVY) on Nicotiana benthamiana plants under controlled conditions and compared them with a chitosan-based resistance inducer product. Our studies indicated that ePGPB- and chitosan-treated plants presented well-defined biocontrol efficacy against CymRSV and CMV, unlike PVX and PVY. They exhibited significant reductions in symptom severity while promoting plant height compared to nontreated, virus-infected controls. However, these phenotypic traits showed no association with relative virus quantification. Moreover, the tested defense-related genes (Enhanced Disease Susceptibility-1 (EDS1), Non-expressor of Pathogenesis-related genes-1 (NPR1), and Pathogenesis-related protein-2B (PR2B)) implied the involvement of a salicylic-acid-related defense pathway triggered by EDS1 gene upregulation. | 2022 | 35805989 |