# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2321 | 0 | 0.8918 | Effect of aromatic oils on the expression of some virulence-associated and antimicrobial resistance genes of Escherichia coli isolated from broilers. OBJECTIVES: This study aimed to prove the effects of Escherichia coli isolates isolated from diseased broilers to form biofilms, describe their antimicrobial sensetivity, and determine the effect of allicin and cinnamon essential oils on the expression of some genes (fimH, int1, and luxS) through quantitative polymerase chain reaction (q-PCR). MATERIALS AND METHODS: 140 samples were obtained from diseased broilers in Beni-Suef Governorate, Egypt. These samples were examined by conventional bacteriology methods to detect the causative agent. The antimicrobial susceptibility of the isolated bacteria was assessed using the disc diffusion method, The ability of yeast extract-casamino acids Congo Red Agar to generate phenotypic biofilms was next tested. The presence of resistance and virulence genes in some multidrug resistant isolates was genotypically investigated. The antibacterial effects of allicin and cinnamon oil were evaluated against the growth of multidrug-resistant E. coli. Finally, q-PCR was utilized to assess changes in some genes' expression. RESULTS: Escherichia coli was isolated from 61 samples (43.6%). An antimicrobial susceptibility test revealed that multidrug-resistance (MDR) (could resist more than three antimicrobial classes) E. coli prevalence was 100%. 40.8% of isolates phenotypically produce biofilms. The detection of resistance and virulence genes by PCR showed that all tested isolates carry aadB, fimH, int1, qnrS, and luxS genes, while only 40% harbor iss genes. q-PCR showed that after treatment with allicin and cinnamon oils, gene expression went down. CONCLUSION: This investigation highlights that E. coli showed resistance against most of the tested antimicrobials; all isolates were MDR. The study showed wide dissemination of virulence and resistance genes among E. coli. Allicin and cinnamon oils have antimicrobial activities and could be used as alternatives to synthetic antimicrobial agents. | 2022 | 35891660 |
| 2094 | 1 | 0.8905 | Evaluation of the antibacterial activity of Weissella confusa K3 cell-free supernatant against extended-spectrum βeta lactamase (ESBL) producing uropathogenic Escherichia coli U60. Different strategies have been approved for controlling extended-spectrum βeta lactamase (ESBL) producing uropathogenic bacteria. The antibacterial activity of Lactic acid bacteria (LAB) is an effective strategy due to its probiotic characteristics and beneficial effects on human health. The antibiotic susceptibility test, disk diffusion method, and double disc synergy test indicated that five enteric uropathogenic isolates were ESBL producers during the present study. They recorded diameters of inhibition zones as ≤ 18, ≤ 8, ≤ 19, and ≤ 8 mm against cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), and ceftriaxone (CRO). Genotypically, bla(TEM) genes are the most common, with (100 %) occurrence in all the five enteric tested uropathogens, followed by bla(SHV) and bla(CTX) genes (60 %). In addition, out of 10 LAB isolates from dairy products, the CFS of isolate no. K3 had high antibacterial activity against the tested ESBLs, especially no. U60, with a MIC of 600 µl. Additionally, the MIC and sub-MIC of K3 CFS inhibited the production of antibiotic-resistant bla (TEM) genes of U60. Analyzing the 16S rRNA sequence confirmed that the most potent ESBL-producing bacteria (U60) and LAB (K3) isolates were identified as Escherichia coli U60.1 and Weissella confuse K3 with accession numbers MW173246 and MW173299.1, respectively, in GenBank. | 2023 | 36873575 |
| 1231 | 2 | 0.8903 | Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. OBJECTIVES: Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. MATERIALS AND METHODS: One hundred and eleven clinical isolates of E. coli were diagnosed from hospitalized patients in 2009. After performing antibiogram and phenotypic confirmation test, polymerase chain reaction (PCR) was performed by blaTEM, blaSHV and blaCTX primers and restriction digestion was carried out using PstI and TaqI (Fermentas-Lithuania) for confirmation. RESULTS: ESBL producers of E. coli isolates were 33.3%. Among 37 ESBL-producing isolates, 35 (94.6%), 21 (56.8%) and 5 (13.5%) were shown to have blaCTX, blaTEM and blaSHV, genes respectively. Co-resistance to non-beta lactam antibiotics was observed more with ESBL producers (P < 0.05). CONCLUSION: The results showed that the studied ESBL genes are found with high prevalence and among them blaCTX is more widespread in urine E. coli isolates in Mashhad. | 2012 | 23493415 |
| 1225 | 3 | 0.8897 | Escherichia coli serogroups in slaughterhouses: Antibiotic susceptibility and molecular typing of isolates. This study aimed to investigate the contamination of carcasses and slaughterhouse environment with Escherichia coli O157:H7 and non-O157 serogroups (O45:H2, O103:H2, O121:H19, O145:H28, O26:H11, O111:H8). For this purpose, a total of 150 samples (30 carcasses, 30 shredding units, 30 knives, 30 slaughterhouse waste water and 30 wall surfaces) were collected from 5 different slaughterhouses in Kayseri, Turkey. The conventional and molecular methods were performed in order to detect Escherichia coli and its serogroups. Of the 150 samples, 55 (36%) were found to be contaminated with E. coli. Among isolates, E. coli serogroup (O157:H7) were detected in 2 (11%) carcass and 2 (11%) wastewater samples. None of the E. coli isolates harbored tested genes (stx1, stx2, eaeA, and hylA). Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of multidrug-resistant bacteria. It was also deduced that these isolates resistance to different antibiotics could be hazardous for public health. | 2022 | 35427957 |
| 1233 | 4 | 0.8895 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1464 | 5 | 0.8886 | Detection of TEM and CTX-M genes from ciprofloxacin resistant Proteus mirabilis and Escherichia coli isolated on urinary tract infections (UTIs). The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential. | 2018 | 29778819 |
| 1232 | 6 | 0.8884 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1466 | 7 | 0.8880 | Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. BACKGROUND: Beta lactams are the most commonly used group of antimicrobials worldwide. The presence of extended-spectrum lactamases (ESBL) affects significantly the treatment of infections due to multidrug resistant strains of gram-negative bacilli. The aim of this study was to characterize the beta-lactamase resistance genes in Escherichia coli isolated from nosocomial infections in Cotonou, Benin. METHODS: Escherichia coli strains were isolated from various biological samples such as urine, pus, vaginal swab, sperm, blood, spinal fluid and catheter. Isolated bacteria were submitted to eleven usual antibiotics, using disc diffusion method according to NCCLS criteria, for resistance analysis. Beta-lactamase production was determined by an acidimetric method with benzylpenicillin. Microbiological characterization of ESBL enzymes was done by double disc synergy test and the resistance genes TEM and SHV were screened by specific PCR. RESULTS: ESBL phenotype was detected in 29 isolates (35.5%). The most active antibiotic was imipenem (96.4% as susceptibility rate) followed by ceftriaxone (58.3%) and gentamicin (54.8%). High resistance rates were observed with amoxicillin (92.8%), ampicillin (94%) and trimethoprim/sulfamethoxazole (85.7%). The genotype TEM was predominant in ESBL and non ESBL isolates with respectively 72.4% and 80%. SHV-type beta-lactamase genes occurred in 24.1% ESBL strains and in 18.1% of non ESBL isolates. CONCLUSION: This study revealed the presence of ESBL producing Eschericiha coli in Cotonou. It demonstrated also high resistance rate to antibiotics commonly used for infections treatment. Continuous monitoring and judicious antibiotic usage are required. | 2015 | 25595314 |
| 1230 | 8 | 0.8879 | Lentic and effluent water of Delhi-NCR: a reservoir of multidrug-resistant bacteria harbouring blaCTX-M, blaTEM and blaSHV type ESBL genes. Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum β-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBL producers. The co-existence of 2-3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India. | 2021 | 34371496 |
| 2096 | 9 | 0.8876 | Investigation of isepamicin in vitro efficiency in Gram negative bacteria efficacy of isepamicin. CONTEXT: Isepamicin is a new semisynthetic aminoglycoside derived from gentamicin B and it is effective against Gram negative bacteria. Antibiotic resistance is an emerging problem and new options need for the treatment of infections caused by Gram negative bacteria. AIMS: In this study we aimed to investigate the in vitro efficiency in carbapenem susceptible and nonsusceptible Enterobacterales and Pseudomonas aeruginosa. METHODS AND MATERIAL: A total of 214 isolates of Gram-negative bacteria (Enterobacterales n = 129 and P. aeruginosa n = 85). Identification of the bacteria was tested in Vitek MS (Biomeriux, France). Susceptibility of isepamicin, amikacin, gentamicin, tobramycin and netilmicin was determined by Kirby Bauer disc diffusion method. The breakpoints for susceptibility to isepamicin, amikacin, gentamicin, streptomycin, tobramycin and netilmicin were evaluated according to the Comité de l'Antibiogramme dela Société Française de Microbiologie (CA-SFM) and EUCAST, respectively. Aminoglycoside modifying enzyme (AME) genes were investigated by multiplex PCR method. RESULTS: Isepamicin susceptibility was determined as 92.3% for Enterobacterales and 67% for P. aeruginosa and 94.4% for carbapenem resistant Enterobacterales. The most common AME gene was aac (6')-Ib in both Enterobacterales (76%) and P. aeruginosa (14.1%). Seven of the isepamicin intermediate or resistant isolates were positive aac (6')-Ib in Enterobacterales and P. aeruginosa. CONCLUSIONS: In this study, isepamicin showed good efficiency against both susceptible and carbapenem nonsusceptible Enterobacterales. But amikacin was prior to isepamicin P. aeruginosa isolates. Isepamicin could be a therapeutic option for the infections caused by Enterobacterales. | 2021 | 33610258 |
| 2408 | 10 | 0.8876 | Prevalence and Detection of qac Genes from Disinfectant-Resistant Staphylococcus aureus Isolated from Salon Tools in Ishaka Town, Bushenyi District of Uganda. Bacterial infections are on a rise with causal-resistant strains increasing the economic burden to both patients and healthcare providers. Salons are recently reported as one of the sources for transmission of such resistant bacterial strains. The current study aimed at the identification of the prevalent bacteria and characterization of quaternary ammonium compound (qac) genes from disinfectant-resistant S. aureus isolated from salon tools in Ishaka town, Bushenyi District of Uganda. A total of 125 swabs were collected from different salon tools (combs, brushes, scissors, clippers, and shaving machines), and prevalent bacteria were isolated using standard microbiological methods. Identification of isolated bacteria was done using standard phenotypic methods including analytical profile index (API). Susceptibility patterns of the isolated bacteria to disinfectant were determined using the agar well diffusion method. Quaternary ammonium compound (qac) genes (qacA/B and qacC) associated with disinfectant resistances were detected from disinfectant-resistant S. aureus using multiplex polymerase chain reaction (PCR) and Sanger sequencing methods. Of the 125 swab samples collected from salons, 78 (62.4%) were contaminated with different bacteria species. Among the salon tools, clippers had the highest contamination of 20 (80.0%), while shaving machines had the lowest contamination of 11 (44.0%). The most prevalent bacteria identified were Staphylococcus epidermidis (28.1%) followed by S. aureus (26.5%). Of all the disinfectants tested, the highest resistance was shown with sodium hypochlorite 1%. Out of the eight (8) disinfectant-resistant S. aureus analysed for qac genes, 2 (25%) isolates (STP6 and STP9) were found to be qacA/B positive, while 2 (25%) isolates (STP8 and STP9) were found to be qacC gene positive. This study has shown that bacterial contamination of salon tools is common, coupled with resistance to disinfectants with sodium hypochlorite resistance being more common. Furthermore, observed resistance was attributed to the presence of qac genes among S. aureus isolates. A search for qac genes for disinfectant resistance from other bacteria species is recommended. | 2020 | 32849931 |
| 1245 | 11 | 0.8876 | Mutation-based fluoroquinolone resistance in carbapenem-resistant Acinetobacter baumannii and Escherichia coli isolates causing catheter-related bloodstream infections. OBJECTIVE: We studied the presence of mutations in the chromosomal quinolone resistance-determining regions (QRDRs) of the fluoroquinolone targets gyrA and parC genes and detected the carbapenem resistance (CR) encoding genes among Acinetobacter baumannii and Escherichia coli isolates from catheter-related bloodstream infections (CRBSIs). METHODS: The study included 39 non-duplicate isolates of A. baumannii (14/39, 35.9%) and E. coli (25/39, 64.1%) isolated from 128 confirmed CRBSIs cases. Antimicrobial susceptibility testing was performed, followed by an evaluation of biofilm formation using the tissue culture plate method. The carbapenemase encoding genes were detected by multiplex polymerase chain reaction (PCR). The mutations in QRDRs of gyrA and parC genes were determined by singleplex PCR amplification followed by DNA sequencing and BlastN analysis in the GenBank database. DNA and the translated amino acid sequences were analyzed using the Mega7 bioinformatics tool. RESULTS: Multidrug-resistant (MDR) E. coli and A. baumannii isolates harbored CR encoding genes and combined gyrA and parC genes mutation. The specific substitutions observed in GyrA were Cys173Arg, Cys174Gly, Asp80Val, Tyr178ASP, Tyr84Gly, Glu85Lys, Ser172Leu, and Asp176Asn, while the specific substitutions observed in the ParC amino acid sequence were point mutation 62 Arg, Phe60Leu, Ils66Val, and Gln76Lys. Point mutation 62Arg was detected in two A. baumannii isolates, whereas Ser172Leu mutation was observed in two E. coli isolates. CONCLUSION: The presence of new single and multiple mutations in QRDR causes the emergence of MDR E. coli and A. baumannii infections in carbapenem-resistant Enterobacteriaceae in Egypt, requiring further investigation in Gram-negative bacteria. | 2023 | 37151743 |
| 1457 | 12 | 0.8873 | Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance. | 2021 | 33562276 |
| 1251 | 13 | 0.8873 | Biofilm Formation and Plasmid-Mediated Quinolone Resistance Genes at Varying Quinolone Inhibitory Concentrations in Quinolone-Resistant Bacteria Superinfecting COVID-19 Inpatients. The likelihood of antimicrobial failure in COVID-19 patients with bacterial superinfection arises from both phenotypic (biofilms) and genotypic mechanisms. This cross-sectional study aimed to determine the inhibitory concentrations of quinolones-nalidixic acid, norfloxacin, ciprofloxacin, ofloxacin, and levofloxacin-in biofilm formers (minimum biofilm inhibitory concentration [MBIC]) and nonformers (minimum inhibitory concentration [MIC]) and correlate inhibitory concentrations with plasmid-mediated quinolone resistance (PMQR) genes in quinolone-resistant bacteria isolated from COVID-19 inpatients. Quinolone-resistant bacteria (n = 193), verified through disc diffusion, were tested for quinolone inhibitory concentrations using broth microdilution and biofilm formation using microtiter plate methods. The polymerase chain reaction was used to detect PMQR genes. Study variables were analyzed using SPSS v.17.0, with a significance level set at P <0.05. MIC-to-MBIC median fold increases for ciprofloxacin, ofloxacin, and levofloxacin were 128 (2-8,192), 64 (4-1,024), and 32 (4-512) in gram-positive cocci (GPC, n = 43), respectively, whereas they were 32 (4-8,192), 32 (4-2,048), and 16 (2-1,024) in fermentative gram-negative bacilli (F-GNB, n = 126) and 16 (4-4,096), 64 (2-64), and 16 (8-512) in nonfermentative gram-negative bacilli (NF-GNB, n = 24). In biofilm-forming F-GNB and NF-GNB, qnrB (10/32 versus 3/10), aac(6')-Ib-cr (10/32 versus 4/10), and qnrS (9/32 versus 0/10) genes were detected. A 32-fold median increase in the MIC-to-MBIC of ciprofloxacin was significantly (P <0.05) associated with qnrA in F-GNB and qnrS in NF-GNB. Biofilms formed by F-GNB and NF-GNB were significantly associated with the aac(6')-Ib-cr and qnrS genes, respectively. Nearly one-third of the superinfecting bacteria in COVID-19 patients formed biofilms and had at least one PMQR gene, thus increasing the need for quinolones at higher inhibitory concentrations. | 2025 | 39561392 |
| 1216 | 14 | 0.8873 | Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment. | 2024 | 38992444 |
| 1240 | 15 | 0.8872 | Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). Bla(CTX-M) genes were detected in 50% (32/64) of isolates, with bla(CTX-M-15) being the most common. Bla(TEM-1), bla(SHV-1) and bla(VIM) genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance. | 2024 | 39066817 |
| 1226 | 16 | 0.8870 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1217 | 17 | 0.8870 | Antimicrobial Susceptibility Profiles among Pseudomonas aeruginosa Isolated from Professional SCUBA Divers with Otitis Externa, Swimming Pools and the Ocean at a Diving Operation in South Africa. SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby-Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim-sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included bla(AmpC) (86.9%) followed by bla(TEM) (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced. | 2022 | 35056039 |
| 1088 | 18 | 0.8869 | Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans. | 2016 | 27482752 |
| 1092 | 19 | 0.8869 | High qnrS retention of ESBL-producing and mcr-harbouring colistin-resistant Escherichia coli in Vietnamese food products. Plasmid-mediated antibiotic-resistant bacteria's transmission is fatal and a major threat to public health. This study aimed to clarify the presence of plasmid-mediated quinolone resistance(PMQR)genes in extended-spectrum β-lactamase(ESBL)-producing or/and mcr-harbouring colistin(COL)-resistant Escherichia coli(ESBL-COL-EC)isolates from Vietnamese and Japanese chicken meat. Resistance towards ciprofloxacin(CIP)was examined in 308 ESBL-COL-EC isolates; CIP-resistant ESBL-COL-EC isolates were examined for the PMQR gene. Approximately, 71.1% and 38.1% of ESBL-COL-EC and ESBLproducing E. coli isolates from Vietnamese and Japanese chicken meat were CIP-resistant, respectively. Multiplex PCR led PMQR detection showed that 35.2% of CIP-resistant ESBL-COL-EC isolates from Vietnamese food contained PMQR gene, whereas CIP-resistant ESBL-COL-EC isolates from Japanese chicken meat did not. Conjugation assays showed that the transmission of qnrS gene carried by E. coli to Salmonella. In conclusion, ESBL-COL-EC isolates from Vietnamese food are associated with a high frequency of fluoroquinolone resistance and a high distribution of the qnrS gene. | 2024 | 39343582 |