CHRYSEOBACTERIUM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
514200.9880Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BACKGROUND: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS: The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION: Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.201627769168
777910.9879Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Reclaimed water provides a water supply alternative to address problems of scarcity in urbanized cities with high living densities and limited natural water resources. In this study, wastewater metagenomes from 6 stages of a wastewater treatment plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and relative abundance of class 1 integron integrases (intl1). ARGs confering resistance to 12 classes of antibiotics (ARG types) persisted through the treatment stages, which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I, aph(3')-I, aac(6')-I, aac(6')-II, ant(2″)-I], beta-lactams [class A, class C, class D beta-lactamases (bla (OXA))], chloramphenicol (acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB), multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS), rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39, tetR, tet43, tetQ, tetX). Although the ARG subtypes in sludge and MBR effluents reduced in diversity relative to the influent, clinically relevant beta lactamases (i.e., bla (KPC), bla (OXA)) were detected, casting light on other potential point sources of ARG dissemination within the wastewater treatment process. To gain a deeper insight into the types of bacteria that may survive the MBR removal process, genome bins were recovered from metagenomic data of MBR effluents. A total of 101 close to complete draft genomes were assembled and annotated to reveal a variety of bacteria bearing metal resistance genes and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired ARGs aac(2')-Ib, bla (OXA-278), and tet36 respectively. In terms of indicator organisms, cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa from influent to conventional treated effluent was lower (0-2.4), compared to MBR effluent (5.3-7.4). We conclude that MBR is an effective treatment method for reducing fecal indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated effluents (<8 MPN/100 mL) and the presence of ARGs and intl1 underscores the need to establish if further treatment should be applied prior to reuse.201930833934
199520.9879Genomic insights into Shigella species isolated from small ruminants and manure in the North West Province, South Africa. This study investigated Shigella species' antibiotic resistance patterns and genomic characteristics from small ruminants and manure collected in Potchefstroom, North West, South Africa. Whole genome sequencing was used to determine resistome profiles of Shigella flexneri isolates from small ruminants' manure and Shigella boydii from sheep faeces. Comparative genomics was employed on the South African 261 S. flexneri strains available from GenBank, including the sequenced strains in this study, by investigating the serovars, antibiotic resistance genes (ARGs), and plasmid replicon types. The S. flexneri strains could not be assigned to known sequence types, suggesting novel or uncharacterized lineages. S. boydii R7-1A was assigned to sequence type 202 (ST202). Serovar 2A was the most common among South African S. flexneri strains, found in 96% of the 250 compared human-derived isolates. The shared mdf(A) was the most prevalent gene, identified in 99% of 261 S. flexneri genomes, including plasmid replicon types ColRNAI_1 (99%) and IncFII_1 (98%). Both species share a core set of resistance determinants mainly involving β-lactams (ampC1, ampC, ampH), macrolides (mphB), polymyxins (eptA, pmrF), multidrug efflux pumps (AcrAB-TolC, Mdt, Emr, Kpn families), and regulatory systems (marA, hns, crp, baeRS, evgAS, cpxA, gadX). However, S. boydii possesses additional resistance genes conferring resistance to tetracyclines (tet(A)), phenicols (floR), sulphonamides (sul2), and aminoglycosides (APH(3'')-Ib, APH(6)-Id), along with the acrEF efflux pump components (acrE, acrF). In contrast, S. flexneri harboured unique genes linked to polymyxin resistance (ugd) and regulatory functions (sdiA, gadW) that were absent in S. boydii. These findings highlight Shigella strains' genomic diversity and antimicrobial resistance potential in livestock-associated environments. Moreover, S. boydii highlights the potential risk of multidrug-resistant bacteria in farming and environmental routes. KEY POINTS: • First whole genome study of Shigella from manure and small ruminants in South Africa. • Shigella boydii strain carried multiple resistance genes to β-lactams and tetracycline. • Multidrug efflux pump gene mdf(A) was detected in 99% of South African Shigella flexneri strains.202541148367
348830.9878Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3')-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS's antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.202135273579
526140.9875Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
329150.9875From wastewater to resistance: characterization of multidrug-resistant bacteria and assessment of natural antimicrobial compounds. The development and spread of antibiotic resistance in wastewater pose significant threats to both the environment and public health. Bacteria harboring multiple antibiotic resistance genes (ARGs), including those associated with horizontal gene transfer (HGT), can serve as persistent reservoirs and vectors for antimicrobial resistance in natural ecosystems. In this study, nine antibiotic-resistant bacterial strains (U1-U9) were isolated from a wastewater treatment plant (WWTP) effluent. The isolates were identified using 16S rRNA gene sequencing and whole-genome sequencing (WGS), and their antibiotic susceptibility profiles were evaluated. All isolates exhibited resistance to multiple antibiotics, and WGS revealed that U1, U2, U4, and U7 harbored diverse ARGs, including β-lactamase genes, efflux pumps, and resistance determinants for sulfonamides, tetracyclines, and, quinolones, confirming the presence of multidrug-resistant bacteria in WWTP effluent. Phylogenetic analysis classified them into Microbacterium spp. (Actinobacteria), Chryseobacterium spp. (Bacteroidetes), Lactococcus lactis spp. (Firmicutes), and Psychrobacter spp. (Proteobacteria). To explore mitigation strategies, eleven natural compounds were screened for their effects on cell growth, biofilm formation, and motility in selected multi-drug-resistant bacteria. Among the tested compounds, curcumin and emodin showed the most consistent inhibitory activity, particularly against Microbacterium spp. strains U1 and U2, and Lactococcus lactis sp. U4. In contrast, Chryseobacterium sp. U7, a Gram-negative strain, exhibited strong resistance to all tested natural compounds, highlighting the challenge of controlling Gram-negative ARBs in wastewater settings. These findings underscore the environmental risks posed by multidrug-resistant and HGT-associated ARG-harboring bacteria in WWTP effluent. They also demonstrate the potential of natural products, such as curcumin and emodin, as alternative or complementary agents for mitigating antibiotic resistance in water systems.202540708915
282460.9874Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. Animal fecal samples collected in the summer and winter from 11 herbivorous animals, including sable antelope (SA), long-tailed goral (LTG), and common eland (CE), at a public zoo were examined for the presence of antibiotic resistance genes (ARGs). Seven antibiotics, including meropenem and azithromycin, were used to isolate culturable multidrug-resistant (MDR) strains. The manures from three animals (SA, LTG, and CE) contained 10(4)-fold higher culturable MDR bacteria, including Chryseobacterium, Sphingobacterium, and Stenotrophomonas species, while fewer MDR bacteria were isolated from manure from water buffalo, rhinoceros, and elephant against all tested antibiotics. Three MDR bacteria-rich samples along with composite samples were further analyzed using nanopore-based technology. ARGs including lnu(C), tet(Q), and mef(A) were common and often associated with transposons in all tested samples, suggesting that transposons carrying ARGs may play an important role for the dissemination of ARGs in our tested animals. Although several copies of ARGs such as aph(3')-IIc, bla(L1), bla(IND-3), and tet(42) were found in the sequenced genomes of the nine MDR bacteria, the numbers and types of ARGs appeared to be less than expected in zoo animal manure, suggesting that MDR bacteria in the gut of the tested animals had intrinsic resistant phenotypes in the absence of ARGs.202335906519
520070.9873Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (bla (IND-13), bla (CIA-3), bla (TEM-116), bla (OXA-209), bla (VEB-15)), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.202235966843
277380.9872Genotypic Characterization of Aminoglycoside Resistance Genes from Bacteria Isolates in Selected Municipal Drinking Water Distribution Sources in Southwestern Nigeria. BACKGROUND: Multi-drug Resistant (MDR) bacteria could lead to treatment failure of infectious diseases and could be transferred by non-potable water. Few studies have investigated occurrence of Antibiotic Resistance Genes (ARGs) among bacteria including Aminoglycoside Modifying Genes (AMGs) from Drinking Water Distribution Systems (DWDS) in Nigeria. Here, we aimed at characterization of AMGs from DWDS from selected states in southwestern Nigeria. METHODS: One hundred and eighty one (181) MDR bacteria that had been previously characterized using 16S rDNA and showed resistance to at least one aminoglycoside antibiotic were selected from treated and untreated six water distribution systems in southwestern Nigeria. MDR bacteria were PCR genotyped for three AMGs:aph (3″)(c), ant (3″)(b) and aph(6)-1d(d). RESULTS: Out of 181 MDR bacteria genotyped, 69(38.12%) tested positive for at least one of the genotyped AMGs. Highest (50, 27.62%) detected gene was ant (3″)(c) followed by aph (3″)(c)(33, 18.23%). Combination of aph(3″)(c) and ant (3″)(b) in a single bacteria was observed as the highest (14, 7.73%) among the detected gene combination. Alcaligenes sp showed the highest (10/20) occurrence of ant (3″)(b) while aph(3″)(c) was the highest detected among Proteus sp (11/22). Other bacteria that showed the presence of AMGs include: Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter and Serratia. CONCLUSIONS: High occurrence of ant (3″)(c) and aph (3″)(c) among these bacteria call for urgent attention among public health workers, because these genes can be easily disseminated to consumers of these water samples if present on mobile genetic elements like plasmids, integrons and transposons.201931447500
542190.9872Florfenicol Resistance in Enterobacteriaceae and Whole-Genome Sequence Analysis of Florfenicol-Resistant Leclercia adecarboxylata Strain R25. Due to inappropriate use, florfenicol resistance is becoming increasingly serious among animal respiratory tract and gut bacteria. To detect the florfenicol resistance mechanism among Enterobacteriaceae bacteria, 292 isolates from animal feces were examined. The agar dilution method was conducted to determine the minimum inhibitory concentration (MIC) for florfenicol, and polymerase chain reaction (PCR) was performed to detect florfenicol resistance genes. To further explore the molecular mechanism of florfenicol resistance, the whole-genome Leclercia adecarboxylata R25 was sequenced. Of the strains tested, 61.6% (180/292) were resistant to florfenicol, 64.4% (188/292) were positive for floR, and 1.0% (3/292) for cfr. The whole-genome sequence analysis of L. adecarboxylata R25 revealed that the floR gene is carried by a transposon and located on a plasmid (pLA-64). Seven other resistance genes are also encoded on pLA-64, all of which were found to be related to mobile genetic elements. The sequences sharing the greatest similarities to pLA-64 are the plasmids p02085-tetA of Citrobacter freundii and p234 and p388, both from Enterobacter cloacae. The resistance gene-related mobile genetic elements also share homologous sequences from different species or genera of bacteria. These findings indicate that floR mainly contributes to the high rate of florfenicol resistance among Enterobacteriaceae. The resistance gene-related mobile genetic elements encoded by pLA-64 may be transferred among bacteria of different species or genera, resulting in resistance dissemination.201931662959
1989100.9872Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. BACKGROUND: Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. METHODS: Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. RESULTS: A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. CONCLUSION: The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association.202439850143
5452110.9872Multidrug Resistance Plasmid pTZC1 Could Be Pooled among Cutibacterium Strains on the Skin Surface. Acne vulgaris is a chronic inflammatory skin disease that is exacerbated by Cutibacterium acnes. Although antimicrobials such as macrolides, clindamycin, and tetracyclines are used to treat acne caused by C. acnes, the increasing prevalence of antimicrobial-resistant C. acnes strains has become a global concern. In this study, we investigated the mechanism by which interspecies transfer of multidrug-resistant genes can lead to antimicrobial resistance. Specifically, the transfer of pTZC1 between C. acnes and C. granulosum isolated from specimens of patients with acne was investigated. Among the C. acnes and C. granulosum isolated from 10 patients with acne vulgaris, 60.0% and 70.0% of the isolates showed resistance to macrolides and clindamycin, respectively. The multidrug resistance plasmid pTZC1, which codes for macrolide-clindamycin resistance gene erm(50) and tetracycline resistance gene tet(W), was identified in both C. acnes and C. granulosum isolated from the same patient. In addition, whole-genome sequencing revealed that the pTZC1 sequences of C. acnes and C. granulosum showed 100% identity using comparative whole-genome sequencing analysis. Therefore, we hypothesize that the horizontal transfer of pTZC1 between C. acnes and C. granulosum strains may occur on the skin surface. The plasmid transfer test revealed a bidirectional transfer of pTZC1 between C. acnes and C. granulosum, and transconjugants that obtained pTZC1 exhibited multidrug resistance. In conclusion, our results revealed that the multidrug resistance plasmid pTZC1 could be transferred between C. acnes and C. granulosum. Furthermore, since pTZC1 transfer among different species may aid in the prevalence of multidrug resistant strains, antimicrobial resistance genes may have been pooled on the skin surface. IMPORTANCE The emergence of antimicrobial resistance not only in Cutibacterium acnes strain but also other skin bacteria such as Staphylococcus epidermidis is a big concern due to antimicrobial use for the treatment of acne vulgaris. Increased prevalence of macrolides-clindamycin resistant C. acnes relates to the acquisition of exogenous antimicrobial resistance genes. erm(50) is harbored by the multidrug resistance plasmid pTZC1, which has been found in C. acnes and C. granulosum strains isolated from patients with acne vulgaris. In this study, C. acnes and C. granulosum with pTZC1 were found in the same patient, and plasmid transfer between C. acnes and C. granulosum was proved by transconjugation assay. This study showed plasmid transfer between other species and the possibility of further prevalence antimicrobial resistance between Cutibacterium species.202336847559
3070120.9872Analysis of Antibiotic Resistance Genes in Water Reservoirs and Related Wastewater from Animal Farms in Central China. This study aimed to explore the phenotype and relationship of drug resistance genes in livestock and poultry farm wastewater and drinking water reservoirs to provide evidence for the transmission mechanisms of drug resistance genes, in order to reveal the spread of drug resistance genes in wastewater from intensive farms in Central China to urban reservoirs that serve as drinking water sources and provide preliminary data for the treatment of wastewater from animal farms to reduce the threat to human beings. DNA extraction and metagenomic sequencing were performed on eight groups of samples collected from four water reservoirs and four related wastewaters from animal farms in Central China. Metagenomic sequencing showed that the top 20 AROs with the highest abundance were vanT_gene, vanY_gene, adeF, qacG, Mtub_rpsL_STR, vanY_gene_, vanW_gene, Mtub_murA_FOF, vanY_gene, vanH_gene, FosG, rsmA, qacJ, RbpA, vanW_gene, aadA6, vanY_gene, sul4, sul1, and InuF. The resistance genes mentioned above belong to the following categories of drug resistance mechanisms: antibiotic target replacement, antibiotic target protection, antibiotic inactivation, and antibiotic efflux. The resistomes that match the top 20 genes are Streptococcus agalactiae and Streptococcus anginosus; Enterococcus faecalis; Enterococcus faecium; Actinomyces viscosus and Bacillus cereus. Enterococcus faecium; Clostridium tetani; Streptococcus agalactiae and Streptococcus anginosus; Streptococcus agalactiae and Streptococcus anginosus; Acinetobacter baumannii, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, Corynebacterium jeikeium, Corynebacterium urealyticum, Mycobacterium kansasii, Mycobacterium tuberculosis, Schaalia odontolytica, and Trueperella pyogenes; Mycobacterium avium and Mycobacterium tuberculosis; Aeromonas caviae, Enterobacter hormaechei, Vibrio cholerae, Vibrio metoecus, Vibrio parahaemolyticus, and Vibrio vulnificus; Pseudomonas aeruginosa and Pseudomonas fluorescens; Staphylococcus aureus and Staphylococcus equorum; M. avium, Achromobacter xylosoxidans, and Acinetobacter baumannii; Sphingobium yanoikuyae, Acinetobacter indicus, Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, and Providencia stuartii. Unreported drug resistance genes and drug-resistant bacteria in Central China were identified in 2023. In the transmission path of drug resistance genes, the transmission path from aquaculture wastewater to human drinking water sources cannot be ignored. For the sake of human health and ecological balance, the treatment of aquaculture wastewater needs to be further strengthened, and the effective blocking of drug resistance gene transmission needs to be considered.202438399800
5134130.9872Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4.202539626482
5414140.9872Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. Bacterial biocide resistance is becoming a matter of concern. In the present study, a collection of biocide-resistant, Gram-positive bacteria from organic foods (including 11 isolates from genus Bacillus, 25 from Enterococcus and 10 from Staphylococcus) were analyzed for genes associated to biocide resistance efflux pumps and antibiotic resistance. The only qac-genes detected were qacA/B (one Bacillus cereus isolate) and smr (one B. cereus and two Staphylococcus saprophyticus isolates). Efflux pump genes efrA and efrB genes were detected in Staphylococcus (60% of isolates), Bacillus (54.54%) and Enterococcus (24%); sugE was detected in Enterococcus (20%) and in one Bacillus licheniformis; mepA was detected in Staphylococcus (60%) and in one Enterococcus isolate (which also carried mdeA), and norE gene was detected only in one Enterococcus faecium and one S. saprophyticus isolate. An amplicon for acrB efflux pump was detected in all but one isolate. When minimal inhibitory concentrations (MICs) were determined, it was found that the addition of reserpine reduced the MICs by eight fold for most of the biocides and isolates, corroborating the role of efflux pumps in biocide resistance. Erythromycin resistance gene ermB was detected in 90% of Bacillus isolates, and in one Staphylococcus, while ereA was detected only in one Bacillus and one Staphyloccus, and ereB only in one Staphylococcus. The ATP-dependent msrA gene (which confers resistance to macrolides, lincosamides and type B streptogramins) was detected in 60% of Bacillus isolates and in all staphylococci, which in addition carried msrB. The lincosamide and streptogramin A resistance gene lsa was detected in Staphylococcus (40%), Bacillus (27.27%) and Enterococcus (8%) isolates. The aminoglycoside resistance determinant aph (3_)-IIIa was detected in Staphylococcus (40%) and Bacillus (one isolate), aph(2_)-1d in Bacillus (27.27%) and Enterococcus (8%), aph(2_)-Ib in Bacillus (one isolate), and the bifunctional aac(6_)1e-aph(2_)-Ia in Staphylococcus (20%), Enterococcus (8%) and Bacillus (one isolate). Chloramphenicol resistance cat gene was detected in Enterococcus (8%) and Staphylococcus (20%), and blaZ only in Staphylococcus (20%). All other antibiotic or biocide resistance genes investigated were not detected in any isolate. Isolates carrying multiple biocide and antibiotic determinants were frequent among Bacillus (36.36%) and Staphylococcus (50%), but not Enterococcus. These results suggest that biocide and antibiotic determinants may be co-selected.201424361832
1180150.9871Examination of Quaternary Ammonium Compound Resistance in Proteus mirabilis Isolated from Cooked Meat Products in China. The aim of this study was to examine the presence of genes responsible for resistance to quaternary ammonium compounds (QACs) and the association of qac genes with class 1 integrons in Proteus mirabilis isolated from cooked meat products. A total of 52 P. mirabilis isolates (29.2%) were detected from 178 samples, and their minimum inhibitory concentrations (MICs) of benzalkonium chloride (BC) ranged from 4 to >32 μg/mL. The isolates with BC MICs of 24 μg/mL were observed most frequently. PCR assays indicated that mdfA, ydgE/ydgF, qacE, qacEΔ1, emrE, sugE(c), and sugE(p) were commonly present (32.7%-100%) in these isolates, but qacH was less prevalent (3.8%). Five groups of resistance gene cassettes were identified in 10 intI1-positive isolates. An unusual gene cassette array dfrA32-ereA-aadA2 was found in one foodborne isolate of P. mirabilis. Two isolates harbored qacH- and sul3- associated non-classic integrons: aadA2-cmlA1-aadA1-qacH-IS440-sul3 and a new arrangement dfrA32-ereA1-aadA2-cmlA1-aadA1-qacH-IS440-sul3, which is first reported in P. mirabilis. Non-classic class 1 integrons were located on conjugative plasmids of 100 kb in two tested isolates. Our data showed that the QAC resistance genes were commonly present among P. mirabilis isolates from cooked meats and qacH was associated with non-classic class 1 integrons. The creation of transconjugants demonstrated that qacH-associated non-classic class 1 integrons were located on conjugative plasmids and therefore could facilitate the co-dissemination of disinfectant and antimicrobial resistance genes among bacteria, an increasing area of concern.201729312157
2012160.9871Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 isolates). The second was resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (the AmKmStSuTe phenotype; 44.6% of all isolates), most commonly of the DT193 phage type (77 of 165 isolates), which represents an unusual resistance pattern for DT193 isolates. We analyzed 64 representative isolates by amplified fragment length polymorphism (AFLP) analysis, which revealed DNA fingerprint similarities that correlated with both resistance patterns and phage types. To investigate the genetic basis for resistance among DT193 isolates, we characterized three AmKmStSuTe pentaresistant strains and one hexaresistant strain, which also expressed resistance to gentamicin (Gm phenotype), all of which had similar DNA fingerprints and all of which were collected during the same sampling. We found that the genes encoding the pentaresistance pattern were different from those from isolates of the DT104 phage type. We also found that all strains encoded all of their resistance genes on plasmids, unlike the chromosomally encoded genes of DT104 isolates, which could be transferred to Escherichia coli via conjugation, but that the plasmid compositions varied among the isolates. Two strains (strains UT08 and UT12) had a single, identical plasmid carrying bla(TEM) (which encodes ampicillin resistance), aphA1-Iab (which encodes kanamycin resistance), strA and strB (which encode streptomycin resistance), class B tetA (which encodes tetracycline resistance), and an unidentified sulfamethoxazole resistance allele. The third pentaresistant strain (strain UT20) was capable of transferring by conjugation two distinct resistance patterns, AmKmStSuTe and KmStSuTe, but the genes were carried on plasmids with slightly different restriction patterns (differing by a single band of 15 kb). The hexaresistant strain (strain UT30) had the same plasmid as strains UT08 and UT12, but it also carried a second plasmid that conferred the AmKmStSuGm phenotype. The second plasmid harbored the gentamicin resistance methylase (grm), which has not previously been reported in food-borne pathogenic bacteria. It also carried the sul1 gene for sulfamethoxazole resistance and a 1-kb class I integron bearing aadA for streptomycin resistance. We also characterized isolates of the DT104 phage type. We found a number of isolates that expressed resistance only to streptomycin and sulfamethoxazole (the StSu phenotype; 8.3% of serovar Typhimurium var. Copenhagen strains) but that had AFLP DNA fingerprints similar or identical to those of strains with genes encoding the typical AmCmStSuTe pentaresistance phenotype of DT104. These atypical StSu DT104 isolates were predominantly cultured from environmental samples and were found to carry only one class I integron of 1.0 kb, in contrast to the typical two integrons (InC and InD) of 1.0 and 1.2 kb, respectively, of the pentaresistant DT104 isolates. Our findings show the widespread existence of multidrug-resistant Salmonella strains and the diversity of multidrug resistance among epidemiologically related strains. The presence of resistance genes on conjugative plasmids and duplicate genes on multiple plasmids could have implications for the spread of resistance factors and for the stability of multidrug resistance among Salmonella serovar Typhimurium isolates.200212149335
5929170.9871Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. A collection of 120 bacterial isolates from small medium enterprises involved in the production of cow milk and the manufacture of goat cheese were screened for sensitivity to biocides benzalkonium chloride (BC), cetrimide (CT), hexadecylpyridinium chloride (HDP), triclosan (TC), hexachlorophene (CF) and poly-(hexamethylen guanidinium) hydrochloride (PHMG). Nineteen isolates were selected according to biocide tolerance and identified by 16S rDNA sequencing as Lactococcus sp. (6) Enterococcus sp. (1), Lactobacillus sp. (4), Bacillus sp. (1) Escherichia sp. (5), Enterobacter sp. (1) and Helicobacter sp. (1). These were further characterised regarding antimicrobial resistance phenotype and genotype. Several isolates were multiply (3 or more) tolerant to biocides or resistant to antibiotics, but only two Escherichia sp. isolates and Enterobacter sp. were multiply resistant to biocides and antibiotics. Statistical analysis of biocide tolerance and antibiotic resistance revealed significant positive correlations between different biocides and between biocides and antibiotics. The biocide tolerance genes most frequently found were qacEΔ1 and qacA/B. The sulfonamide resistance gene sul1 was found in two Escherichia sp. isolates and in Enterobacter sp., all of which also carried qacEΔ1. Beta-lactam (bla(CTX-M), bla(PSE)) and tetracycline resistance genes [tet(A), tet(C) and tet(D)] were detected. Efflux pump genes acrB and mdfA were found in most Gram-negative isolates. Results from the study suggest that exposure to biocides can indirectly select for antibiotic resistance.201727889169
5199180.9871Whole genome sequencing uncovers a novel IND-16 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. BACKGROUND: Chryseobacterium indologenes is an emerging opportunistic pathogen in hospital-acquired infection, which is intrinsically resistant to most antimicrobial agents against gram-negative bacteria. In the purpose of extending our understanding of the resistance mechanism of C. indologenes, we sequenced and analyzed the genome of an extensively antibiotic resistant C. indologenes strain, isolated from a Chinese prostate cancer patient. We also investigated the presence of antibiotic resistance genes, particularly metallo-β-lactamase (MBL) genes, and performed a comparative genomic analysis with other Chryseobacterium species. RESULTS: 16s rRNA sequencing indicated the isolate belongs to C. indologenes. We assembled a total of 1095M bp clean-filtered reads into 171 contigs by de novo assembly. The draft genome of C. indologenes J31 consisted of 5,830,795 bp with a GC content of 36.9 %. RAST analysis revealed the genome contained 5196 coding sequences (CDSs), 28 rRNAs, 81 tRNAs and 114 pseudogenes. We detected 90 antibiotic resistance genes from different drug classes in the whole genome. Notably, a novel bla(IND) allele bla(IND-16) was identified, which shared 99 % identity with bla(IND-8) and bla(IND-10). By comparing strain J31 genome to the closely four related neighbors in the genus Chryseobacterium, we identified 2634 conserved genes, and 1449 unique genes. CONCLUSIONS: In this study, we described the whole genome sequence of C. indologenes strain J31. Numerous resistance determinants were detected in the genome and might be responsible for the extensively antibiotic resistance of this strain. Comparative genomic analysis revealed the presence of considerable strain-specific genes which would contribute to the distinctive characteristics of strain J31. Our study provides the insight of the multidrug resistance mechanism in genus Chryseobacterium.201627785154
5253190.9871Effects of Cage Farming on Antimicrobial and Heavy Metal Resistance of Escherichia coli, Enterococcus faecium, and Lactococcus garvieae. OBJECTIVE: To characterize antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) of Escherichia coli and Enterococcus faecium isolated from the sediment and Lactococcus garvieae isolated from fish. MATERIALS AND METHODS: The isolated bacteria were identified by sequencing 16S rRNA genes. After identification of the bacteria, tetracycline (tetA, tetB, tetD), erythromycin (ereA, ereB), sulfonamides (sulI, sulII), trimethoprim (dhfrA1), β-lactam (bla(TEM), bla(CTX), ampC), florfenicol (floR), and class 1 integron (Int1) resistance gene were then determined. The presence of HMRGs, including copper (copA), mercury (mer), cadmium, zinc, cobalt (czc), and nickel, cobalt cadmium (ncc), was also analyzed by PCR. All strains were checked for the presence of ARGs and/or HMRGs on the plasmid. RESULTS: The frequency of the β-lactam resistance gene was highest and ranged from 49.7% to 62.3%, followed by sulfonamides, tetracyclines, phenicols, and macrolide resistance genes. The cage culture fish farming practice showed significant effects on ARG frequency of bacteria isolated from the sediment, whereas it had no effect on the frequency of HMRGs. The most prevalent HMRG was determined as mercury-resistant mer gene in all bacteria. All four of the HMRGs were located on plasmids with frequency ranging from 1.20% to 32.53%. The presence of ARGs on plasmids ranged between 2.2% (Dhfr1) and 75% (AmpC, blactx, tetB), and plasmids did not contain tetD and ereB genes. CONCLUSION: The results of this study indicate that fish farming can significantly influence the antimicrobial resistance properties of bacteria isolated from sediment samples.201829733265