# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6369 | 0 | 0.9966 | Association of furanone C-30 with biofilm formation & antibiotic resistance in Pseudomonas aeruginosa. BACKGROUND & OBJECTIVES: Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial bloodstream infections in humans. This study was aimed to explore the association of furanone C-30 with biofilm formation, quorum sensing (QS) system and antibiotic resistance in P. aeruginosa. METHODS: An in vitro model of P. aeruginosa bacterial biofilm was established using the standard P. aeruginosa strain (PAO-1). After treatment with 2.5 and 5 μg/ml of furanone C-30, the change of biofilm morphology of PAO-1 was observed, and the expression levels of QS-regulated virulence genes (lasB, rhlA and phzA2), QS receptor genes (lasR, rhlR and pqsR) as well as QS signal molecule synthase genes (lasI, rhlI, pqsE and pqsH) were determined. Besides, the AmpC expression was quantified in planktonic and mature biofilm induced by antibiotics. RESULTS: Furanone C-30 treatment significantly inhibited biofilm formation in a dose-dependent manner. With the increase of furanone C-30 concentration, the expression levels of lasB, rhlA, phzA2, pqsR, lasI, rhlI pqsE and pqsH significantly decreased in mature biofilm bacteria while the expression levels of lasR and rhlR markedly increased. The AmpC expression was significantly decreased in both planktonic and biofilm bacteria induced by imipenem and ceftazidime. INTERPRETATION & CONCLUSIONS: Furanone C-30 may inhibit biofilm formation and antibiotic resistance in P. aeruginosa through regulating QS genes. The inhibitory effect of furanone C-30 on las system appeared to be stronger than that on rhl system. Further studies need to be done with different strains of P. aeruginosa to confirm our findings. | 2018 | 29998876 |
| 4768 | 1 | 0.9962 | Attenuating the virulence of the resistant superbug Staphylococcus aureus bacteria isolated from neonatal sepsis by ascorbic acid, dexamethasone, and sodium bicarbonate. BACKGROUND: Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. METHODS: Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. RESULTS: Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. CONCLUSIONS: The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies. | 2022 | 36348266 |
| 737 | 2 | 0.9962 | Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance. | 2016 | 26652129 |
| 9024 | 3 | 0.9961 | Tackling Virulence of Pseudomonas aeruginosa by the Natural Furanone Sotolon. The bacterial resistance development due to the incessant administration of antibiotics has led to difficulty in their treatment. Natural adjuvant compounds can be co-administered to hinder the pathogenesis of resistant bacteria. Sotolon is the prevailing aromatic compound that gives fenugreek its typical smell. In the current work, the anti-virulence activities of sotolon on Pseudomonas aeruginosa have been evaluated. P. aeruginosa has been treated with sotolon at sub-minimum inhibitory concentration (MIC), and production of biofilm and other virulence factors were assessed. Moreover, the anti-quorum sensing (QS) activity of sotolon was in-silico evaluated by evaluating the affinity of sotolon to bind to QS receptors, and the expression of QS genes was measured in the presence of sotolon sub-MIC. Furthermore, the sotolon in-vivo capability to protect mice against P. aeruginosa was assessed. Significantly, sotolon decreased the production of bacterial biofilm and virulence factors, the expression of QS genes, and protected mice from P. aeruginosa. Conclusively, the plant natural substance sotolon attenuated the pathogenicity of P. aeruginosa, locating it as a plausible potential therapeutic agent for the treatment of its infections. Sotolon can be used in the treatment of bacterial infections as an alternative or adjuvant to antibiotics to combat their high resistance to antibiotics. | 2021 | 34356792 |
| 633 | 4 | 0.9960 | The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of phoQ caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.2-fold reduced cytotoxicity to human lung epithelial cells, substantially reduced lettuce leaf virulence, and a major, 10 000-fold reduction in competitiveness in chronic rat lung infections. Microarray analysis revealed that PhoQ controlled the expression of many genes consistent with these phenotypes and with its known role in polymyxin B resistance. It was also demonstrated that PhoQ controls the expression of many genes outside the known PhoP regulon. | 2009 | 19246741 |
| 770 | 5 | 0.9959 | Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests. | 2024 | 38519499 |
| 6280 | 6 | 0.9959 | Genomic variation in Pseudomonas aeruginosa clinical respiratory isolates with de novo resistance to a bacteriophage cocktail. Pseudomonas aeruginosa is an opportunistic pathogen that can cause sinus infections and pneumonia in cystic fibrosis (CF) patients. Bacteriophage therapy is being investigated as a treatment for antibiotic-resistant P. aeruginosa infections. Although virulent bacteriophages have shown promise in treating P. aeruginosa infections, the development of bacteriophage-insensitive mutants (BIMs) in the presence of bacteriophages has been described. The aim of this study was to examine the genetic changes associated with the BIM phenotype. Biofilms of three genetically distinct P. aeruginosa strains, including PAO1 (ATCC 15692), and two clinical respiratory isolates (one CF and one non-CF) were grown for 7 days and treated with either a cocktail of four bacteriophages or a vehicle control for 7 consecutive days. BIMs isolated from the biofilms were detected by streak assays, and resistance to the phage cocktail was confirmed using spot test assays. Comparison of whole genome sequencing between the recovered BIMs and their respective vehicle control-treated phage-sensitive isolates revealed structural variants in two strains, and several small variants in all three strains. These variations involved a TonB-dependent outer membrane receptor in one strain, and mutations in lipopolysaccharide synthesis genes in two strains. Prophage deletion and induction were also noted in two strains, as well as mutations in several genes associated with virulence factors. Mutations in genes involved in susceptibility to conventional antibiotics were also identified in BIMs, with both decreased and increased antibiotic sensitivity to various antibiotics being observed. These findings may have implications for future applications of lytic phage therapy.IMPORTANCELytic bacteriophages are viruses that infect and kill bacteria and can be used to treat difficult-to-treat bacterial infections, including biofilm-associated infections and multidrug-resistant bacteria. Pseudomonas aeruginosa is a bacterium that can cause life-threatening infections. Lytic bacteriophage therapy has been trialed in the treatment of P. aeruginosa infections; however, sometimes bacteria develop resistance to the bacteriophages. This study sheds light on the genetic mechanisms of such resistance, and how this might be harnessed to restore the sensitivity of multidrug-resistant P. aeruginosa to conventional antibiotics. | 2025 | 40162801 |
| 2493 | 7 | 0.9959 | Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized. | 2025 | 40135944 |
| 5052 | 8 | 0.9958 | Modulation of Klebsiella pneumoniae Outer Membrane Vesicle Protein Cargo under Antibiotic Treatment. Klebsiella pneumoniae is a nosocomial pathogen and an important propagator of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Like other Gram-negative bacteria, they secrete outer membrane vesicles (OMVs) that distribute virulence and resistance factors. Here, we subjected a K. pneumoniae-XDR to subinhibitory concentrations of meropenem, amikacin, polymyxin B, and a combination of these agents to evaluate changes in the protein cargo of OMVs through liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genome sequencing of the clinical isolate K. pneumoniae strain HCD1 (KpHCD1) revealed the presence of 41 resistance genes and 159 virulence factors. We identified 64 proteins in KpHCD1-OMVs modulated with different antibiotic treatments involved in processing genetic information, environmental information, cell envelope formation, energy metabolism, and drug resistance. The OMV proteome expression profile suggests that OMVs may be associated with pathogenicity, survival, stress response, and resistance dissemination. | 2023 | 37371610 |
| 8864 | 9 | 0.9958 | Resistance, mechanism, and fitness cost of specific bacteriophages for Pseudomonas aeruginosa. The bacteriophage is an effective adjunct to existing antibiotic therapy; however, in the course of bacteriophage therapy, host bacteria will develop resistance to bacteriophages, thus affecting the efficacy. Therefore, it is important to describe how bacteria evade bacteriophage attack and the consequences of the biological changes that accompany the development of bacteriophage resistance before the bacteriophage is applied. The specific bacteriophage vB3530 of Pseudomonas aeruginosa (P. aeruginosa) has stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. Ten bacteriophage-resistant strains (TL3780-R) were induced using the secondary infection approach, and the plaque assay showed that vB3530 was less sensitive to TL3780-R. Identification of bacteriophage adsorption receptors showed that the bacterial surface polysaccharide was probably the adsorption receptor of vB3530. In contrast to the TL3780 parental strain, TL3780-R is characterized by the absence of long lipopolysaccharide chains, which may be caused by base insertion of wzy or deletion of galU. It is also intriguing to observe that, in comparison to the parent strain, the bacteriophage-resistant strains TL3780-R mostly exhibited a large cost of fitness (growth rate, biofilm formation, motility, and ability to produce enhanced pyocyanin). In addition, TL3780-R9 showed increased susceptibility to aminoglycosides and chlorhexidine, which may be connected to the loss and down-regulation of mexX expression. Consequently, these findings fully depicted the resistance mechanism of P. aeruginosa to vB3530 and the fitness cost of bacteriophage resistance, laying a foundation for further application of bacteriophage therapy.IMPORTANCEThe bacteriophage is an effective adjunct to existing antibiotic therapy; However, bacteria also develop defensive mechanisms against bacteriophage attack. Thus, there is an urgent need to deeply understand the resistance mechanism of bacteria to bacteriophages and the fitness cost of bacteriophage resistance so as to lay the foundation for subsequent application of the phage. In this study, a specific bacteriophage vB3530 of P. aeruginosa had stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. In addition, we found that P. aeruginosa may lead to phage resistance due to the deletion of galU and the base insertion of wzy, involved in the synthesis of lipopolysaccharides. Simultaneously, we showed the association with the biological state of the bacteria after bacteria acquire bacteriophage resistance, which is extremely relevant to guide the future application of therapeutic bacteriophages. | 2024 | 38299825 |
| 9023 | 10 | 0.9958 | Repositioning secnidazole as a novel virulence factors attenuating agent in Pseudomonas aeruginosa. Long-term treatment with antibiotics gives rise to the evolution of multi-drug resistant bacteria which are hard to be treated. Virulence factors inhibitors depend on disarming of microbial pathogens through reducing expression of virulence factors, abolishing the pathogen capability to harm the host. In the present study, the influence of secnidazole on Pseudomonas aeruginosa virulence factors expression was characterized. Production of Pseudomonas aeruginosa virulence factors such as pyocyanin, pyoverdin, elastase, rhamnolipids, proteases and hemolysins was examined following treatment of bacteria with sub-inhibitory concentration of secnidazole. Interestingly, secnidazole showed a powerful inhibitory effect on Pseudomonas aeruginosa virulence factors. Our results were further confirmed using qRT-PCR showing that there was a significant decrease in the expression of quorum sensing genes; lasI, lasR, rhlI, rhlR, pqsA and pqsR that regulate expression of virulence factors in Pseudomonas aeruginosa. Moreover, in vivo experiment using mice as infection model showed that secnidazole-treated bacteria were less capable to kill mice as compared to untreated bacteria. Importantly, there was a significant reduction in mortality in mice injected with secnidazole-treated bacteria relative to mice inoculated with untreated bacteria. In summary, our data showed that secnidazole could play a role in attenuating Pseudomonas aeruginosa through reducing virulence factors production. Moreover, our data clearly suggest that secnidazole could be involved in the treatment of Pseudomonas aeruginosa infections in order to control infection and lower the development of bacterial resistance to antibiotics. | 2019 | 30500409 |
| 8837 | 11 | 0.9957 | Phage resistance formation and fitness costs of hypervirulent Klebsiella pneumoniae mediated by K2 capsule-specific phage and the corresponding mechanisms. INTRODUCTION: Phage is promising for the treatment of hypervirulent Klebsiella pneumoniae (hvKP) infections. Although phage resistance seems inevitable, we found that there still was optimization space in phage therapy for hvKP infection. METHODS: The clinical isolate K. pneumoniae FK1979 was used to recover the lysis phage ΦFK1979 from hospital sewage. Phage-resistant bacteria were obtained on LB agar and used to isolate phages from sewage. The plaque assay, transmission electron microscopy (TEM), multiplicity of infection test, one-step growth curve assay, and genome analysis were performed to characterize the phages. Colony morphology, precipitation test and scanning electron microscope were used to characterize the bacteria. The absorption test, spot test and efficiency of plating (EOP) assay were used to identify the sensitivity of bacteria to phages. Whole genome sequencing (WGS) was used to identify gene mutations of phage-resistant bacteria. The gene expression levels were detected by RT-qPCR. Genes knockout and complementation of the mutant genes were performed. The change of capsules was detected by capsule quantification and TEM. The growth kinetics, serum resistance, biofilm formation, adhesion and invasion to A549 and RAW 264.7 cells, as well as G. mellonella and mice infection models, were used to evaluate the fitness and virulence of bacteria. RESULTS AND DISCUSSION: Here, we demonstrated that K2 capsule type sequence type 86 hvKP FK1979, one of the main pandemic lineages of hvKP with thick capsule, rapidly developed resistance to a K2-specific lysis phage ΦFK1979 which was well-studied in this work to possess polysaccharide depolymerase. The phage-resistant mutants showed a marked decrease in capsule expression. WGS revealed single nucleotide polymorphism (SNP) in genes encoding RfaH, galU, sugar glycosyltransferase, and polysaccharide deacetylase family protein in the mutants. RfaH and galU were further identified as being required for capsule production and phage sensitivity. Expressions of genes involved in the biosynthesis or regulation of capsule and/or lipopolysaccharide significantly decreased in the mutants. Despite the rapid and frequent development of phage resistance being a disadvantage, the attenuation of virulence and fitness in vitro and in vivo indicated that phage-resistant mutants of hvKP were more susceptible to the immunity system. Interestingly, the newly isolated phages targeting mutants changed significantly in their plaque and virus particle morphology. Their genomes were much larger than and significantly different from that of ΦFK1979. They possessed much more functional proteins and strikingly broader host spectrums than ΦFK1979. Our study suggests that K2-specific phage has the potential to function as an antivirulence agent, or a part of phage cocktails combined with phages targeting phage-resistant bacteria, against hvKP-relevant infections. | 2023 | 37538841 |
| 6281 | 12 | 0.9957 | Evolved Aztreonam Resistance Is Multifactorial and Can Produce Hypervirulence in Pseudomonas aeruginosa. While much attention has been focused on acquired antibiotic resistance genes, chromosomal mutations may be most important in chronic infections where isolated, persistently infecting lineages experience repeated antibiotic exposure. Here, we used experimental evolution and whole-genome sequencing to investigate chromosomally encoded mutations causing aztreonam resistance in Pseudomonas aeruginosa and characterized the secondary consequences of resistance development. We identified 19 recurrently mutated genes associated with aztreonam resistance. The most frequently observed mutations affected negative transcriptional regulators of the mexAB-oprM efflux system and the target of aztreonam, ftsI While individual mutations conferred modest resistance gains, high-level resistance (1,024 µg/ml) was achieved through the accumulation of multiple variants. Despite being largely stable when strains were passaged in the absence of antibiotics, aztreonam resistance was associated with decreased in vitro growth rates, indicating an associated fitness cost. In some instances, evolved aztreonam-resistant strains exhibited increased resistance to structurally unrelated antipseudomonal antibiotics. Surprisingly, strains carrying evolved mutations which affected negative regulators of mexAB-oprM (mexR and nalD) demonstrated enhanced virulence in a murine pneumonia infection model. Mutations in these genes, and other genes that we associated with aztreonam resistance, were common in P. aeruginosa isolates from chronically infected patients with cystic fibrosis. These findings illuminate mechanisms of P. aeruginosa aztreonam resistance and raise the possibility that antibiotic treatment could inadvertently select for hypervirulence phenotypes.IMPORTANCE Inhaled aztreonam is a relatively new antibiotic which is being increasingly used to treat cystic fibrosis patients with Pseudomonas aeruginosa airway infections. As for all antimicrobial agents, bacteria can evolve resistance that decreases the effectiveness of the drug; however, the mechanisms and consequences of aztreonam resistance are incompletely understood. Here, using experimental evolution, we have cataloged spontaneous mutations conferring aztreonam resistance and have explored their effects. We found that a diverse collection of genes contributes to aztreonam resistance, each with a small but cumulative effect. Surprisingly, we found that selection for aztreonam resistance mutations could confer increased resistance to other antibiotics and promote hypervirulence in a mouse infection model. Our study reveals inherent mechanisms of aztreonam resistance and indicates that aztreonam exposure can have unintended secondary effects. | 2017 | 29089424 |
| 8889 | 13 | 0.9957 | Differences in Gene Expression Profiles between Early and Late Isolates in Monospecies Achromobacter Biofilm. Bacteria of genus Achromobacter are emerging pathogens in cystic fibrosis (CF) capable of biofilm formation and development of antimicrobial resistance. Evolutionary adaptions in the transition from primary to chronic infection were assessed by transcriptomic analysis of successive isolates of Achromobacter xylosoxidans from a single CF patient. Several efflux pump systems targeting antimicrobial agents were upregulated during the course of the disease, whereas all genes related to motility were downregulated. Genes annotated to subsystems of sulfur metabolism, protein metabolism and potassium metabolism exhibited the strongest upregulation. K+ channel genes were hyperexpressed, and a putative sulfite oxidase was more than 1500 times upregulated. The transcriptome patterns indicated a pivotal role of sulfur metabolism and electrical signalling in Achromobacter biofilms during late stage CF lung disease. | 2017 | 28534862 |
| 4308 | 14 | 0.9957 | Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections. | 2021 | 33540588 |
| 9760 | 15 | 0.9957 | Mutations leading to ceftolozane/tazobactam and imipenem/cilastatin/relebactam resistance during in vivo exposure to ceftazidime/avibactam in Pseudomonas aeruginosa. Identifying resistance mechanisms to novel antimicrobials informs treatment strategies during infection and antimicrobial development. Studying resistance that develops during the treatment of an infection can provide the most clinically relevant mutations conferring resistance, but cross-sectional studies frequently identify multiple candidate resistance mutations without resolving the driver mutation. We performed whole-genome sequencing of longitudinal Pseudomonas aeruginosa from a patient whose P. aeruginosa developed imipenem/cilastatin/relebactam and ceftolozane/tazobactam resistance during ceftazidime/avibactam treatment. This analysis determined new mutations that arose in isolates resistant to both imipenem/cilastatin/relebactam and ceftolozane/tazobactam. Mutations in penicillin-binding protein 3 ftsI, the MexAB-OprM repressor nalD, and a virulence regulator pvdS were found in resistant isolates. Importantly, drug efflux was not increased in the resistant isolate compared to the most closely related susceptible isolates. We conclude that mutations in peptidoglycan synthesis genes can alter the efficacy of multiple antimicrobials. IMPORTANCE: Antibiotic resistance is a significant challenge for physicians trying to treat infections. The development of novel antibiotics to treat resistant infections has not been prioritized for decades, limiting treatment options for infections caused by many high-priority pathogens. Cross-resistance, when one mutation provides resistance to multiple antibiotics, is most problematic. Mutations that cause cross-resistance need to be considered when developing new antibiotics to guide developers toward drugs with different targets, and thus a better likelihood of efficacy. This work was undertaken to determine the mutation that caused resistance to three antibiotics for highly resistant Pseudomonas aeruginosa infection treatment while the bacteria were exposed to only one of these agents. The findings provide evidence that drug developers should endeavor to find effective antibiotics with new targets and that medical providers should utilize medications with different mechanisms of action in bacteria that have become resistant to even one of these three agents. | 2025 | 39932323 |
| 8840 | 16 | 0.9957 | Role of Biofilm in Bacterial Infection and Antimicrobial Resistance. Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. Microbial flora which produces biofilm manifests an altered growth rate and transcribes genes that provide them resistance to antimicrobial and host immune systems. Biofilms protect the invading bacteria against the immune system of the host via impaired activation of phagocytes and the complement system. Biofilm-producing isolates showed greater multidrug resistance than non-biofilm producers. Biofilm causes antibiotic resistance through processes like chromosomally encoded resistant genes, restriction of antibiotics, reduction of growth rate, and host immunity. Biofilm formation is responsible for the development of superbugs like methicillin-resistant Staphylococcus aureus, vancomycin-resistant Staphylococcus aureus, and metallo-beta-lactamase producing Pseudomonas aeruginosa. Regular monitoring of antimicrobial resistance and maintaining hygiene, especially in hospitalized patients are required to control biofilm-related infections in order to prevent antimicrobial resistance. | 2022 | 36705135 |
| 4763 | 17 | 0.9957 | Epigenetic and Drug Response Modulation of Epigalocaten-In-3-Gallate in Staphylococcus aureus with Divergent Resistance Phenotypes. Healthcare-associated methicillin-resistant Staphylococcus aureus infections represent extremely high morbidity and mortality rates worldwide. We aimed to assess the antimicrobial potential and synergistic effect between Epigalocatenin-3-gallate (EGCG) and different antibiotics in S. aureus strains with divergent resistance phenotypes. EGCG exposure effects in epigenetic and drug resistance key modulators were also evaluated. S. aureus strains (n = 32) were isolated from infected patients in a Lisbon hospital. The identification of the S. aureus resistance phenotype was performed through automatized methods. The antibiotic synergistic assay was performed through disk diffusion according to EUCAST guidelines with co-exposure to EGCG (250, 100, 50 and 25 µg/mL). The bacteria's molecular profile was assessed through FTIR spectroscopy. The transcriptional expression of OrfX, SpdC and WalKR was performed by using qRT-PCR. FTIR-spectroscopy analysis enabled the clear discrimination of MRSA/MSSA strains and the EGCG exposure effect in the bacteria's molecular profiles. Divergent resistant phenotypes were associated with divergent transcriptional expression of the epigenetic modulator OrfX, particularly in MRSA strains, as well as the key drug response modulators SpdC and WalKR. These results clearly demonstrate that EGCG exposure alters the expression patterns of key epigenetic and drug response genes with associated divergent-resistant profiles, which supports its potential for antimicrobial treatment and/or therapeutic adjuvant against antibiotic-resistant microorganisms. | 2023 | 36978386 |
| 3762 | 18 | 0.9957 | The epidemiology of antimicrobial resistance and transmission of cutaneous bacterial pathogens in domestic animals. As the primary agents of skin and soft tissue infections in animals, Staphylococcus spp and Pseudomonas aeruginosa are among the most formidable bacterial pathogens encountered by veterinarians. Staphylococci are commensal inhabitants of the surfaces of healthy skin and mucous membranes, which may gain access to deeper cutaneous tissues by circumventing the stratum corneum's barrier function. Compromised barrier function occurs in highly prevalent conditions such as atopic dermatitis, endocrinopathies, and skin trauma. P aeruginosa is an environmental saprophyte that constitutively expresses virulence and antimicrobial resistance genes that promote its success as an animal pathogen. For both organisms, infections of the urinary tract, respiratory tract, joints, central nervous system, and body cavities may occur through ascension along epithelial tracts, penetrating injuries, or hematogenous spread. When treating infections caused by these pathogens, veterinarians now face greater therapeutic challenges and more guarded outcomes for our animal patients because of high rates of predisposing factors for infection and the broad dissemination of antimicrobial resistance genes within these bacterial species. This review considers the history of the rise and expansion of multidrug resistance in staphylococci and P aeruginosa and the current state of knowledge regarding the epidemiologic factors that underly the dissemination of these pathogens across companion animal populations. Given the potential for cross-species and zoonotic transmission of pathogenic strains of these bacteria, and the clear role played by environmental reservoirs and fomites, a one-health perspective is emphasized. | 2023 | 36917615 |
| 8839 | 19 | 0.9956 | Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Bacteriophage (phage) therapy is a promising means to combat drug-resistant bacterial pathogens. Infection by phage can select for mutations in bacterial populations that confer resistance against phage infection. However, resistance against phage can yield evolutionary trade-offs of biomedical relevance. Here, we report the discovery that infection by certain staphylococcal phages sensitizes different strains of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactams, a class of antibiotics against which MRSA is typically resistant. MRSA cells that survive infection by these phages display significant reductions in minimal inhibitory concentration against different β-lactams compared to uninfected bacteria. Transcriptomic profiling reveals that these evolved MRSA strains possess highly modulated transcriptional profiles, where numerous genes involved in S. aureus virulence are downregulated. Phage-treated MRSA exhibited attenuated virulence phenotypes in the form of reduced hemolysis and clumping. Despite sharing similar phenotypes, whole-sequencing analysis revealed that the different MRSA strains evolved unique genetic profiles during infection. These results suggest complex evolutionary trajectories in MRSA during phage predation and open up new possibilities to reduce drug resistance and virulence in MRSA infections. | 2025 | 40637714 |