# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 819 | 0 | 0.9905 | Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE. | 1989 | 2548057 |
| 3059 | 1 | 0.9893 | Genome Analysis of Kingella kingae Strain KWG1 Reveals How a β-Lactamase Gene Inserted in the Chromosome of This Species. We describe the genome of a penicillinase-producing Kingella kingae strain (KWG1), the first to be isolated in continental Europe, whose bla(TEM-1) gene was, for the first time in this species, found to be chromosomally inserted. The bla(TEM) gene is located in an integrative and conjugative element (ICE) inserted in Met-tRNA and comprising genes that encode resistance to sulfonamides, streptomycin, and tetracycline. This ICE is homologous to resistance-conferring plasmids of K. kingae and other Gram-negative bacteria. | 2016 | 26574009 |
| 355 | 2 | 0.9893 | Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. Two plasmid deoxyribonucleic acid sequences mediating multiple antibiotic resistance transposed in vivo between coexisting plasmids in clinical isolates of Serratia marcescens. This event resulted in the evolution of a transferable multiresistance plasmid. Both sequences, designated in Tn1699 and Tn1700, were flanked by inverted deoxyribonucleic acid repetitions and could transpose between replicons independently of the Excherichia coli recA gene function. Tn1699 and Tn1700 mediated ampicillin, carbenicillin, kanamycin, and gentamicin resistance but differed in the type of gentamicin-acetyltransferase enzymes that they encoded. The structural genes for these enzymes share a great deal of polynucleotide sequence similarity despite their phenotypic differences. The transposition of Tn1699 and Tn1700 to coresident transferable plasmids has contributed to the dissemination of antibiotic resistance among other gram-negative bacteria. These organisms have recently caused nosocomial infections in epidemic proportions. | 1979 | 387747 |
| 9990 | 3 | 0.9891 | Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria. | 2003 | 12603745 |
| 368 | 4 | 0.9889 | Construction and complementation of in-frame deletions of the essential Escherichia coli thymidylate kinase gene. This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases. | 2006 | 16461678 |
| 356 | 5 | 0.9889 | Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Molecular genetic analysis of Borrelia burgdorferi, the cause of Lyme disease, has been hampered by the absence of any means of efficient generation, identification, and complementation of chromosomal and plasmid null gene mutants. The similarity of borrelial G + C content to that of Gram-positive organisms suggested that a wide-host-range plasmid active in Gram-positive bacteria might also be recognized by borrelial DNA replication machinery. One such plasmid, pGK12, is able to propagate in both Gram-positive and Gram-negative bacteria and carries erythromycin and chloramphenicol resistance markers. pGK12 propagated extrachromosomally in B. burgdorferi B31 after electroporation but conferred only erythromycin resistance. pGK12 was used to express enhanced green fluorescent protein in B31 under the control of the flaB promoter. Escherichia coli transformed with pGK12 DNA extracted from B31 expressing only erythromycin resistance developed both erythromycin and chloramphenicol resistance, and plasmid DNA isolated from these transformed E. coli had a restriction pattern similar to the original pGK12. Our data indicate that the replicons of pGK12 can provide the basis to continue developing efficient genetic systems for B. burgdorferi together with the erythromycin resistance and reporter egfp genes. | 2000 | 10781091 |
| 348 | 6 | 0.9888 | Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? Antibiotic-producing soil bacteria of the genus Streptomyces form a huge natural reservoir of antibiotic resistance genes for the dissemination within the soil community. Streptomyces plasmids encode a unique conjugative DNA transfer system clearly distinguished from classical conjugation involving a single-stranded DNA molecule and a type IV protein secretion system. Only a single plasmid-encoded protein, TraB, is sufficient to translocate a double-stranded DNA molecule into the recipient in Streptomyces matings. TraB is a hexameric pore-forming ATPase that resembles the chromosome segregator protein FtsK and translocates DNA by recognizing specific 8-bp repeats present in the plasmid clt locus. Mobilization of chromosomal genes does not require integration of the plasmid, because TraB also recognizes clt-like sequences distributed all over the chromosome. | 2012 | 23082971 |
| 3054 | 7 | 0.9887 | Acquisition by a Campylobacter-like strain of aphA-1, a kanamycin resistance determinant from members of the family Enterobacteriaceae. A Campylobacter-like organism, BM2196, resistant to kanamycin and streptomycin-spectinomycin was isolated from the feces of a patient with acute enteritis. The kanamycin and streptomycin-spectinomycin resistances were not transferable to Camplylobacter sp. or to Escherichia coli, and no plasmid DNA was detected in this strain. The resistance genes were therefore tentatively assigned to a chromosomal locality. Analysis by the phosphocellulose paper-binding assay of extracts from BM2196 indicated that resistance to kanamycin and structurally related antibiotics was due to the synthesis of 3'-aminoglycoside phosphotransferase type I [APH(3')-I], an enzyme specific for gram-negative bacteria, and that resistance to streptomycin-spectinomycin was secondary to the presence of a 3",9-aminoglycoside adenylyltransferase. Homology between BM2196 and an APH(3')-I probe was detected by DNA-DNA hybridization. A 2.2-kilobase BM2196 DNA fragment conferring resistance to kanamycin was cloned in E. coli and was sequenced partially. The resistance gene appeared nearly identical to that of Tn903 from E. coli and was adjacent to IS15-delta, an insertion sequence widespread in gram-negative bacteria, thus indicating that Campylobacter species can act as a recipient for genes originating in members of the family Enterobacteriaceae. | 1987 | 2821885 |
| 1755 | 8 | 0.9886 | Pathogenicity Genomic Island-Associated CrpP-Like Fluoroquinolone-Modifying Enzymes among Pseudomonas aeruginosa Clinical Isolates in Europe. Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands. | 2020 | 32340994 |
| 395 | 9 | 0.9886 | O-antigen protects gram-negative bacteria from histone killing. Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae. | 2013 | 23951089 |
| 349 | 10 | 0.9886 | Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species. The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5. Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions. The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor. | 1990 | 2172217 |
| 3043 | 11 | 0.9885 | The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family. | 1984 | 6328217 |
| 3013 | 12 | 0.9885 | Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. OBJECTIVES: The multiresistance plasmid pSCFS1 from Staphylococcus sciuri was sequenced completely and analysed with regard to its gene organization and the putative role of a novel ABC transporter in antimicrobial resistance. METHODS: Plasmid pSCFS1 was transformed into Staphylococcus aureus RN4220, overlapping restriction fragments were cloned into Escherichia coli plasmid vectors and sequenced. For further analysis of the ABC transporter, a approximately 3 kb EcoRV-HpaI fragment was cloned into the staphylococcal plasmid pT181MCS and the respective S. aureus RN4220 transformants were subjected to MIC determination. RESULTS: A total of 14 ORFs coding for proteins of >100 amino acids were detected within the 17 108 bp sequence of pSCFS1. Five of them showed similarity to recombination/mobilization genes while another two were similar to plasmid replication genes. In addition to the previously described genes cfr for chloramphenicol/florfenicol resistance and erm(33) for inducible resistance to macrolide-lincosamide-streptogramin B resistance, a Tn554-like spectinomycin resistance gene and Tn554-related transposase genes were identified. Moreover, a novel ABC transporter was detected and shown to mediate low-level lincosamide resistance. CONCLUSION: Plasmid pSCFS1 is composed of various parts which show similarity to sequences known to occur on plasmids or transposons of Gram-positive, but also Gram-negative bacteria. It is likely that pSCFS1 represents the result of inter-plasmid recombination events also involving the truncation of a Tn554-like transposon. | 2004 | 15471995 |
| 393 | 13 | 0.9885 | Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. The Red recombinase system of bacteriophage Lambda has been used to inactivate chromosomal genes in bacteria using PCR products. In this study, we describe the replacement of the ampicillin resistance marker of helper plasmids pKD46 and pCP20 by a gentamicin resistance gene to disrupt chromosomal genes and then to eliminate FRT flanked resistance gene in multiple antibiotic-resistant Salmonella enterica strains. | 2008 | 18619499 |
| 456 | 14 | 0.9884 | Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. The topoisomerase IV parC and parE genes from the wall-less organism Mycoplasma hominis PG21 were cloned and sequenced. The coupled genes are located far from the DNA gyrase genes gyrA and gyrB. They encode proteins of 639 and 866 amino acids, respectively. As expected, the encoded ParE and ParC proteins exhibit higher homologies with the topoisomerase IV subunits of the gram-positive bacteria Staphylococcus aureus and Streptococcus pneumoniae than with their Escherichia coli counterparts. The conserved regions include the Tyr residue of the active site and the region involved in quinolone resistance (quinolone resistance-determining region [QRDR]) in ParC and the ATP-binding site and the QRDR in ParE. | 1998 | 9687401 |
| 429 | 15 | 0.9884 | An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. We have constructed and used an integrative vector, pAT112, that takes advantage of the transposition properties (integration and excision) of transposon Tn1545. This 4.9-kb plasmid is composed of: (i) the replication origin of pACYC184; (ii) the attachment site (att) of Tn1545; (iii) erythromycin-and kanamycin-resistance-encoding genes for selection in Gram- and Gram+ bacteria; and (iv) the transfer origin of IncP plasmid RK2, which allows mobilization of the vector from Escherichia coli to various Gram+ recipients. Integration of pAT112 requires the presence of the transposon-encoded integrase, Int-Tn, in the new host. This vector retains the insertion specificity of the parental element Tn1545 and utilises it to carry out insertional mutagenesis, as evaluated in Enterococcus faecalis. Since pAT112 contains the pACYC184 replicon and lacks most of the restriction sites that are commonly used for molecular cloning, a gene from a Gram+ bacterium disrupted with this vector can be recovered in E. coli by cleavage of genomic DNA, intramolecular ligation and transformation. Regeneration of the gene, by excision of pAT112, can be obtained in an E. coli strain expressing the excisionase and integrase of Tn1545. The functionality of this system was illustrated by characterization of an IS30-like structure in the chromosome of En. faecalis. Derivatives pAT113 and pAT114 contain ten unique cloning sites that allow screening of recombinants having DNA inserts by alpha-complementation in E. coli carrying the delta M15 deletion of lacZ alpha. These vectors are useful to clone and introduce foreign genes into the genomes of Gram+ bacteria. | 1991 | 1657722 |
| 497 | 16 | 0.9883 | vanI: a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A chromosomal vancomycin resistance gene cluster was previously described for the anaerobic Desulfitobacterium hafniense Y51. We demonstrate that this gene cluster, characterized by its d-Ala-d-Lac ligase-encoding vanI gene, is present in all strains of D. hafniense, D. chlororespirans and some strains of Desulfosporosinus spp. This gene cluster was not found in vancomycin-sensitive Desulfitobacterium or Desulfosporosinus spp., and we show that this antibiotic resistance can be exploited as an intrinsic selection marker for Desulfitobacterium hafniense and D. chlororespirans. The gene cluster containing vanI is phylogenetically only distantly related with those described from soil and gut bacteria, but clusters instead with vancomycin resistance genes found within the phylum Actinobacteria that include several vancomycin-producing bacteria. It lacks a vanH homologue, encoding a D-lactate dehydrogenase, previously thought to always be present within vancomycin resistance gene clusters. The location of vanH outside the resistance gene cluster likely hinders horizontal gene transfer. Hence, the vancomycin resistance cluster in D. hafniense should be regarded a novel one that we here designated vanI after its unique d-Ala-d-Lac ligase. | 2014 | 25042042 |
| 4461 | 17 | 0.9883 | Plasmid-mediated quinolone resistance. Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6')-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat. | 2014 | 25584197 |
| 494 | 18 | 0.9883 | The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp Bg/II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes merT, merP, merC and merA. The level of DNA sequence similarity between these genes and those of the mer determinant of Tn21 was between 56 center dot 4 and 62 center dot 4%. A neighbour-joining phylogenetic tree of merA gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative mer determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the Bg/II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH mer operator/promoter (O/P) region in vivo has shown constitutive expression from the mer PTCPA promoter, which could be partially repressed by the presence of a trans-acting MerR protein from a Tn21-like mer determinant. This incomplete repression of mer PTCPA promoter activity may be due to the presence of an extra base between the -35 and -10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed mer PTCPA promoter could be restored by the addition of inducing levels of Hg2+ ions. Using the polymerase chain reaction with primers designed to amplify regions in the merP and merA genes, 1 center dot 37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments. | 1996 | 8932707 |
| 1754 | 19 | 0.9883 | Transposons Carrying the aacC2e Aminoglycoside and bla(TEM) Beta-Lactam Resistance Genes in Acinetobacter. This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying bla(TEM) and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The bla(TEM-1) and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, bla(TEM-1) and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain bla(TEM) and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate bla(TEM) and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species. | 2024 | 38593463 |