# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6739 | 0 | 0.9876 | Potential regulation of small RNAs on bacterial function activities in pig farm wastewater treatment plants. Small RNAs (sRNAs) are key players in the regulation of bacterial gene expression. However, the distribution and regulatory functions of sRNA in pig farm wastewater treatment plants (WWTPs) remains unknown. In this study, the wastewaters in anoxic and oxic tanks of the WWTPs were collected. The profiles of the community structure, mRNA expression, and sRNA expression of bacteria in pig farm wastewater were investigated using transcriptome sequencing and qPCR. This study demonstrated that there was a higher abundance of sRNA in the pig farm WWTPs and 52 sRNAs were detected. The sRNAs were mainly present in Proteobacteria and Firmicutes, including the potential human pathogenic bacteria (HPB) (Escherichia, Shigella, Bordetella and Morganella), crop pathogen (Pectobacterium) and denitrifying bacteria (Zobellella). And the sRNAs were involved in the bacterial functional activities such as translation, transcription, drug resistance, membrane transport and amino acid metabolism. In addition, most sRNAs had a higher abundance in anoxic tanks which contained a higher abundance of the genes associated with infectious diseases and drug resistance than that in oxic tanks. The results presented here show that in pig farm WWTPs, sRNA played an important role in bacterial function activities, especially the infectious diseases, drug resistance and denitrification, which can provide a new point of penetration for improving the pig farm WWTPs. | 2020 | 32172978 |
| 7634 | 1 | 0.9875 | Mixture Effects of Polystyrene Microplastics on the Gut Microbiota in C57BL/6 Mice. Microplastics are plastic particles with sizes of less than 5 mm. The ubiquity of microplastics in the environment has raised serious public health concerns. Microplastics could disturb the composition of the gut microbiota due to both chemical composition and physical interactions, which might further influence the metabolism and immune function of the host. However, most of the exposure studies chose microplastics of specific sizes. In the natural environment, living organisms are exposed to a mixture of microplastics of various sizes. In this study, male C57BL/6 mice were exposed to polystyrene (PS) microplastics with different sizes, including microplastics with diameters of 0.05-0.1 μm (PS0.1 group, 100 ppb), 9-10 μm (PS10 group, 100 ppb), and microplastic mixtures of both 0.05-0.1 and 9-10 μm (PSMix group) at a total concentration of 100 ppb (50 ppb for each size). Mixture effects of microplastics were investigated on the composition of bacteria and fungi as well as functional metagenome and microbial genes encoding antibiotic resistance and virulence factors. We found that some bacteria, fungi, and microbial metabolic pathways were only altered in the PSMix group, not in the PS0.1 or PS10 group, suggesting the toxic effects of the microplastic mixture on the composition of fungi and bacteria, and the functional metagenome is different from the effects of microplastics at specific sizes. Meanwhile, altered genes encoding antibiotic resistance and virulence factors in the PSMix group were shared with the PS0.1 and PS10 groups, possibly due to functional redundancy. Our findings help improve the understanding of the toxic effects of the microplastic mixture on the gut microbiome. | 2025 | 40060808 |
| 9017 | 2 | 0.9875 | Molecular mechanism of Hfq-dependent sRNA1039 and sRNA1600 regulating antibiotic resistance and virulence in Shigella sonnei. Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies. | 2024 | 38141834 |
| 6426 | 3 | 0.9873 | Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM. | 2024 | 38805824 |
| 3548 | 4 | 0.9872 | From flagellar assembly to DNA replication: CJSe's role in mitigating microbial antibiotic resistance genes. The emergence of Antibiotic Resistance Genes (ARGs) in Campylobacter jejuni (CJ) poses a severe threat to food safety and human health. However, the specific impact of CJ and its variants on ARGs and other related factors remains to be further elucidated. Herein, integrated metagenomic sequencing and co-occurrence network analysis approach were employed to investigate the impact of CJ and CJ incorporated with biogenic selenium (CJSe) on ARGs, flagellar assembly pathways, microbial communities, and DNA replication pathways in chicken manure. Compared to the Control (CON) and CJ groups, the CJSe group exhibited 2.4-fold increase selenium levels (P < 0.01) in chicken manure. Notable differences were also observed between the CJ and CJSe groups, with sequence results showing a CJ > CJSe > CON trend in total ARG copy numbers. Furthermore, the CJSe group showed 31.6 % fewer flagellar assembly genes compared to the CJ group. Additionally, compared to the CJ group, CJSe inhibited pathways such as basal body/hook (e.g., FliH, FliO, FliQ reduced by 25-52 %) and stator (MotB downregulated by 42.3 %), suppressing flagellar assembly. We also found that both CJ and CJSe influenced bacterial DNA replication pathways, with the former increasing ARG-carrying bacteria and the latter, under selenium-induced selective pressure, reducing ARG-carrying bacteria. Moreover, compared to the CJ group, the CJSe group showed a significantly lower 9.72 % copy number of total archaeal DNA replication genes. Furthermore, through intricate co-occurrence network analysis, we discovered the complex interplay between changes in ARGs and bacterial and archaeal DNA replication dynamics within the microbial community. These findings indicate that CJSe mitigates the threat posed by CJ and reduces ARG prevalence, while its dual functionality enables applications in biofortified crop production and soil remediation in selenium-deficient regions, thereby advancing circular economy systems. While the current study demonstrates CJSe's dual functionality under controlled conditions, future work will implement a dedicated ecological risk assessment framework encompassing Se speciation/leaching tests and non-target organism assays to confirm environmental safety under field-relevant scenarios. This approach aligns with sustainable strategies for food security and public health safeguarding. | 2025 | 41108960 |
| 6391 | 5 | 0.9872 | Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. Accurate quantification of the airborne antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is critically important to assess their health risks. However, the currently widely used high-volume filter sampler (HVFS) often causes the desiccation of the sample, interfering with subsequent bacterial culture. To overcome this limitation, a high-volume tandem liquid impinging sampler (HVTLIS) was developed and optimized to investigate the airborne bacterial microbiomes and antibiotic resistomes under different weathers in Tianjin, China. Results revealed that HVTLIS can capture significantly more diverse culturable bacteria, ARB, and ARGs than HVFS. Compared with fine and hazy weathers, dusty weather had significantly more diverse and abundant airborne bacteria, ARGs, and human opportunistic pathogens with the resistance to last-resort antibiotics of carbapenems and polymyxin B, implicating a potential human health threat of dusty bioaerosols. Intriguingly, we represented the first report of Saccharibacteria predominance in the bioaerosol, demonstrating that the potential advantage of HVTLIS in collecting airborne microbes. | 2020 | 32438084 |
| 7052 | 6 | 0.9872 | Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Microplastics (MPs) and pharmaceuticals are common emerging pollutants in sewage, and their coexistence may have more negative effects on the environments. This study chose tetracycline (TC), ampicillin (AMP) and triclosan (TCS) to investigate the responses of antibiotic resistance genes (ARGs) and microbial communities on different MPs (polyvinyl chloride (PVC), polyethylene (PE)) biofilms (plastisphere). The adsorption capacity of three pharmaceuticals on PVC and PE decreased in the order of AMP > TC > TCS. PE was more conducive to microbial attachment than PVC. MPs led to the increase of the total copies of ARGs and mobile genetic elements (MGEs) in the sewage. Importantly, multidrug ARGs and MGEs were enriched on plastisphere. Furthermore, the co-occurrence of TC and MPs led to higher risks of spreading ARGs and MGEs. In addition, potential pathogenic bacteria Legionella, Mycobacterium, Neisseria and Arcobacter were more abundant on plastisphere than those in sewage, and these bacteria might be the hosts for ARGs and MGEs. This study showed that plastisphere could be repositories of ARGs and MGEs in sewage and accumulated potential pathogenic bacteria. | 2021 | 33454495 |
| 7376 | 7 | 0.9871 | River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Continuous exposure to low concentrations of antibiotics (sub-minimal inhibitory concentration: sub-MIC) is thought to lead to the development of antimicrobial resistance (AMR) in the environmental microbiota. However, the relationship between antibiotic exposure and resistance selection in environmental bacterial communities is still poorly understood and unproven. Therefore, we measured the concentration of twenty antibiotics, resistome quality, and analyzed the taxonomic composition of microorganisms in river biofilms collected upstream (UPS) and downstream (DWS) (at the point of discharge) from the wastewater treatment plant (WWTP) of Poitiers (France). The results of statistical analysis showed that the antibiotic content, resistome, and microbiome composition in biofilms collected UPS were statistically different from that collected DWS. According to Procrustes analysis, microbial community composition and antibiotics content may be determinants of antibiotic resistance genes (ARGs) composition in samples collected DWS. However, network analysis showed that the occurrence and concentration of antibiotics measured in biofilms did not correlate with the occurrence and abundance of antibiotic resistance genes and mobile genetic elements. In addition, network analysis suggested patterns of co-occurrence between several ARGs and three classes of bacteria/algae: Bacteroidetes incertae sedis, Cyanobacteria/Chloroplast, and Nitrospira, in biofilm collected UPS. The absence of a direct effect of antibiotics on the selection of resistance genes in the collected samples suggests that the emergence of antibiotic resistance is probably not only due to the presence of antibiotics but is a more complex process involving the cumulative effect of the interaction between the bacterial communities (biotic) and the abiotic matrix. Nevertheless, this study confirms that WWTP is an important reservoir of various ARGs, and additional efforts and legislation with clearly defined concentration limits for antibiotics and resistance determinants in WWTP effluents are needed to prevent their spread and persistence in the environment. | 2022 | 35222329 |
| 9043 | 8 | 0.9871 | The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. Clarithromycin (CLA) is a commonly recommended drug for Helicobacter pylori eradication. However, the prevalence of CLA-resistant H. pylori is increasing. Although point mutations in the 23S rRNA are key factors for CLA resistance, other factors, including efflux pumps and regulation genes, are also involved in the resistance of H. pylori to CLA. Guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bispyrophosphate [(p)ppGpp)], which are synthesized by the bifunctional enzyme SpoT in H. pylori, play an important role for some bacteria to adapt to antibiotic pressure. Nevertheless, no related research involving H. pylori has been reported. In addition, transporters have been found to be related to bacterial drug resistance. Therefore, this study investigated the function of SpoT in H. pylori resistance to CLA by examining the shifts in the expression of transporters and explored the role of transporters in the CLA resistance of H. pylori A ΔspoT strain was constructed in this study, and it was shown that SpoT is involved in H. pylori tolerance of CLA by upregulating the transporters HP0939, HP1017, HP0497, and HP0471. This was assessed using a series of molecular and biochemical experiments and a cDNA microarray. Additionally, the knockout of genes hp0939, hp0471, and hp0497 in the resistant strains caused a reduction or loss (the latter in the Δhp0497 strain) of resistance to CLA. Furthermore, the average expression levels of these four transporters in clinical CLA-resistant strains were considerably higher than those in clinical CLA-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori adaption to CLA stress. | 2017 | 28242673 |
| 6424 | 9 | 0.9870 | Bacterium-Phage Symbiosis Facilitates the Enrichment of Bacterial Pathogens and Antibiotic-Resistant Bacteria in the Plastisphere. The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs. The plastisphere phage community exhibited decreased diversity and virulent proportion compared to those found in environments. Indexes of phage-host interaction networks indicated significant associations of phages with pathogenic and antibiotic-resistant bacteria (ARB), particularly for biodegradable plastics. Known phage-encoded auxiliary metabolic genes (AMGs) were involved in nutrient metabolism, antibiotic production, quorum sensing, and biofilm formation in the plastisphere, which contributed to enhanced competition and survival of pathogens and ARB hosts. Phages also carried transcriptionally active virulence factor genes (VFGs) and antibiotic resistance genes (ARGs), and could mediate their horizontal transfer in microbial communities. Overall, these discoveries suggest that plastisphere phages form symbiotic relationships with their hosts, and that phages encoding AMGs and mediating horizontal gene transfer (HGT) could increase the source of pathogens and antibiotic resistance from the plastisphere. | 2025 | 39836086 |
| 5168 | 10 | 0.9870 | Bacteriophage Resistance Affects Flavobacterium columnare Virulence Partly via Mutations in Genes Related to Gliding Motility and the Type IX Secretion System. Increasing problems with antibiotic resistance have directed interest toward phage therapy in the aquaculture industry. However, phage resistance evolving in target bacteria is considered a challenge. To investigate how phage resistance influences the fish pathogen Flavobacterium columnare, two wild-type bacterial isolates, FCO-F2 and FCO-F9, were exposed to phages (FCO-F2 to FCOV-F2, FCOV-F5, and FCOV-F25, and FCO-F9 to FCL-2, FCOV-F13, and FCOV-F45), and resulting phenotypic and genetic changes in bacteria were analyzed. Bacterial viability first decreased in the exposure cultures but started to increase after 1 to 2 days, along with a change in colony morphology from original rhizoid to rough, leading to 98% prevalence of the rough morphotype. Twenty-four isolates (including four isolates from no-phage treatments) were further characterized for phage resistance, antibiotic susceptibility, motility, adhesion, and biofilm formation, protease activity, whole-genome sequencing, and virulence in rainbow trout fry. The rough isolates arising in phage exposure were phage resistant with low virulence, whereas rhizoid isolates maintained phage susceptibility and high virulence. Gliding motility and protease activity were also related to the phage susceptibility. Observed mutations in phage-resistant isolates were mostly located in genes encoding the type IX secretion system, a component of the Bacteroidetes gliding motility machinery. However, not all phage-resistant isolates had mutations, indicating that phage resistance in F. columnare is a multifactorial process, including both genetic mutations and changes in gene expression. Phage resistance may not, however, be a challenge for development of phage therapy against F. columnare infections since phage resistance is associated with decreases in bacterial virulence. IMPORTANCE Phage resistance of infectious bacteria is a common phenomenon posing challenges for the development of phage therapy. Along with a growing world population and the need for increased food production, constantly intensifying animal farming has to face increasing problems of infectious diseases. Columnaris disease, caused by Flavobacterium columnare, is a worldwide threat for salmonid fry and juvenile farming. Without antibiotic treatments, infections can lead to 100% mortality in a fish stock. Phage therapy of columnaris disease would reduce the development of antibiotic-resistant bacteria and antibiotic loads by the aquaculture industry, but phage-resistant bacterial isolates may become a risk. However, phenotypic and genetic characterization of phage-resistant F. columnare isolates in this study revealed that they are less virulent than phage-susceptible isolates and thus not a challenge for phage therapy against columnaris disease. This is valuable information for the fish farming industry globally when considering phage-based prevention and curing methods for F. columnare infections. | 2021 | 34106011 |
| 9713 | 11 | 0.9870 | Versatile lifestyles of Edwardsiella: Free-living, pathogen, and core bacterium of the aquatic resistome. Edwardsiella species in aquatic environments exist either as individual planktonic cells or in communal biofilms. These organisms encounter multiple stresses, include changes in salinity, pH, temperature, and nutrients. Pathogenic species such as E. piscicida, can multiply within the fish hosts. Additionally, Edwardsiella species (E. tarda), can carry antibiotic resistance genes (ARGs) on chromosomes and/or plasmids, that can be transmitted to the microbiome via horizontal gene transfer. E. tarda serves as a core in the aquatic resistome. Edwardsiela uses molecular switches (RpoS and EsrB) to control gene expression for survival in different environments. We speculate that free-living Edwardsiella can transition to host-living and vice versa, using similar molecular switches. Understanding such transitions can help us understand how other similar aquatic bacteria switch from free-living to become pathogens. This knowledge can be used to devise ways to slow down the spread of ARGs and prevent disease outbreaks in aquaculture and clinical settings. | 2022 | 34969351 |
| 6430 | 12 | 0.9870 | Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health. | 2023 | 37019264 |
| 7053 | 13 | 0.9869 | Plastisphere showing unique microbiome and resistome different from activated sludge. Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs. | 2022 | 36041613 |
| 8403 | 14 | 0.9869 | Uncovering virulence factors in Cronobacter sakazakii: insights from genetic screening and proteomic profiling. The increasing problem of antibiotic resistance has driven the search for virulence factors in pathogenic bacteria, which can serve as targets for the development of new antibiotics. Although whole-genome Tn5 transposon mutagenesis combined with phenotypic assays has been a widely used approach, its efficiency remains low due to labor-intensive processes. In this study, we aimed to identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a pathogenic bacterium known for causing severe infections, particularly in infants and immunocompromised individuals. By employing a combination of genetic screening, comparative proteomics, and in vivo validation using zebrafish and rat models, we rapidly screened highly virulent strains and identified two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats. Proteomic profiling revealed upregulated proteins upon knockout of rcsA and treR, including FabH, GshA, GppA, GcvH, IhfB, RfaC, MsyB, and three unknown proteins. Knockout of their genes significantly weakened bacterial virulence, confirming their role as potential virulence factors. Our findings contribute to understanding the pathogenicity of C. sakazakii and provide insights into the development of targeted interventions and therapies against this bacterium.IMPORTANCEThe emergence of antibiotic resistance in pathogenic bacteria has become a critical global health concern, necessitating the identification of virulence factors as potential targets for the development of new antibiotics. This study addresses the limitations of conventional approaches by employing a combination of genetic screening, comparative proteomics, and in vivo validation to rapidly identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a highly pathogenic bacterium responsible for severe infections in vulnerable populations. The identification of two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats and the proteomic profiling upon knockout of rcsA and treR provides novel insights into the mechanisms underlying bacterial virulence. The findings contribute to our understanding of C. sakazakii's pathogenicity, shed light on the regulatory pathways involved in bacterial virulence, and offer potential targets for the development of novel interventions against this highly virulent bacterium. | 2023 | 37750707 |
| 6729 | 15 | 0.9869 | Gut bacteria contribute to fenvalerate resistance in the tomato leafminer, Tuta absoluta. The tomato leafminer is a destructive pest causing significant damage to crops. Overreliance on insecticides has led to developing resistance in this insect pest. Microorganisms may benefit insects, including nutrient acquisition, digestion, immunity, and resistance to pesticides. Understanding these diverse interactions is crucial for effective management of pests and their resistance to pesticides. Here, we have investigated Here, we have investigated the role of gut bacteria in the development of fenvalerate-resistant tomato leafminer. The gut bacteria of fenvalerate-resistant (FR) and fenvalerate-susceptible (FS) populations were compared using Real-time PCR with group-specific primers. It was shown that the gut bacteria community of the two populations differed. The population of Actinobacteria and Gammaproteobacteria communities in the gut of FR larvae were greater than those in FS ones. Also, some of the gut bacteria cultured on NA medium containing fenvalerate were able to grow and degrade fenvalerate. 16S rRNA sequencing showed that Enterobacter spp (Gammaproteobacteria) was common in both populations. However, Micrococcus spp (Actinobacteria) was detected specifically in the resistant population. Fenvalerate bioassays with gut bacteria-free (germ-free) line and the gnotobiotic lines that have only Enterobacter spp (FR(E)), Micrococcus spp (FR(M)), Enterobacter spp and Micrococcus spp (FR(E+M)), demonstrated that the resistant ratio diminished in the gut bacteria-free (germ-free) line, while in the FR(E+M) line, resistant ratio was reduced by 15 percent. Our findings showed that the gut bacteria especially Enterobacter spp and Micrococcus spp are involved in developing resistant tomato leafminers to fenvalerate. Further investigations are required to identify the specific mechanisms of resistance, which could provide valuable insights for effectively controlling this pest. | 2025 | 40685396 |
| 6910 | 16 | 0.9869 | Fallow practice mitigates antibiotic resistance genes in soil by shifting host bacterial survival strategies. Soil is a key reservoir of antibiotic resistance genes (ARGs), with cropland soils potentially transferring ARGs through the food chain, posing risks to human health. However, the profile of soil ARGs under different crop rotation patterns, particularly fallow practice aimed at enhancing soil fertility, remains inadequately understood. This study characterized the dynamic distribution of ARGs and survival strategies of ARGs host bacteria in two crop rotation patterns (rice-wheat rotation, RW, and rice-fallow rotation, RF), as well as the factors impacting the ARGs profiles. The results demonstrated ARGs abundance was significantly reduced by 45.04 % in the RF system, especially those related to multidrug resistance. In the RF system, the higher content of soil organic matter (SOM) serves as the primary nutrient source, driving a shift in host bacterial survival strategies toward K-strategists. Concurrently, the depletion of SOM restricts the proliferation of host bacteria, ultimately leading to a reduction in the abundance of ARGs. In contrast, fertilizer application in the RW system leads to NO(3)(-)-N accumulation, thereby favoring the proliferation of r-strategist bacteria that carry ARGs and exacerbating ARGs abundance in the soil. This study suggests that fallow could be an important field management practice for mitigating soil ARGs contamination in cropland. | 2025 | 40555016 |
| 30 | 17 | 0.9869 | RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. | 2013 | 24090429 |
| 8629 | 18 | 0.9869 | Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion. | 2022 | 36204627 |
| 7135 | 19 | 0.9869 | Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. The physicochemical properties of inhalable particles during hazy days have been extensively studied, but their biological health threats have not been well-explored. This study aimed to explore the impacts of haze pollution on airborne bacteria and antibiotic-resistance genes (ARGs) by conducting a comparative study of the bacterial community structure and functions, pathogenic compositions, and ARGs between hazy days and non-hazy days in a cold megacity in Northeast China. The results suggested that bacterial communities were shaped by local weather and customs. In this study, cold-resistant and Chinese sauerkraut-related bacterial compositions were identified as predominant genera. In the comparative analysis, higher proportions of gram-negative bacteria and pathogens were detected on hazy days than on non-hazy days. Pollutants on hazy days provided more nutrients (sulfate, nitrate and ammonium) for bacterial metabolism but also caused more bacterial cell damage and death than on non-hazy days. This study also detected increases in the sub-types and average absolute abundance of airborne resistance genes on hazy days compared to non-hazy days. The results of this study revealed that particle pollution promotes the dissemination and exchange of pathogenic bacteria and ARGs among large urban populations, which leads to a higher potential for human inhalation exposure. | 2020 | 32512457 |