CHO - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
636600.9248Fluorinated Beta-diketo Phosphorus Ylides Are Novel Efflux Pump Inhibitors in Bacteria. BACKGROUND: One of the most important resistance mechanisms in bacteria is the increased expression of multidrug efflux pumps. To combat efflux-related resistance, the development of new efflux pump inhibitors is essential. MATERIALS AND METHODS: Ten phosphorus ylides were compared based on their MDR-reverting activity in multidrug efflux pump system consisting of the subunits acridine-resistance proteins A and B (AcrA and AcrB) and the multidrug efflux pump outer membrane factor TolC (TolC) of Escherichia coli K-12 AG100 strain and its AcrAB-TolC-deleted strain. Efflux inhibition was assessed by real-time fluorimetry and the inhibition of quorum sensing (QS) was also investigated. The relative gene expression of efflux QS genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. RESULTS: The most potent derivative was Ph(3)P=C(COC(2)F(5))CHO and its effect was more pronounced on the AcrAB-TolC-expressing E. coli strain, furthermore the most active compounds, Ph(3)P=C(COCF(3))OMe, Ph(3)P=C(COC(2)F(5))CHO and Ph(3)P=C(COCF(3))COMe, reduced the expression of efflux pump and QS genes. CONCLUSION: Phosphorus ylides might be valuable EPI compounds to reverse efflux related MDR in bacteria.201627815466
600910.9219Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria.202438683168
999820.9205mSphere of Influence: Uncovering New Ways To Control Multidrug Resistance by Dissecting Essential Cell Processes. Ana L. Flores-Mireles works in the fields of microbial pathogenesis and development of new therapeutics. In this mSphere of Influence article, she reflects on how the papers "Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously" by H. Cho et al. (Nat Microbiol 1:16172, 2016, https://doi.org/10.1038/nmicrobiol.2016.172) and "A comprehensive, CRISPR-based functional analysis of essential genes in bacteria" by J. M. Peters et al. (Cell 165:1493-1506, 2016, https://doi.org/10.1016/j.cell.2016.05.003) made an impact on her approach to dissecting essential processes to understand microbial pathogenesis in catheter-associated urinary tract infections and generate an effective treatment with reduced likelihood of developing resistance.201931554727
33030.9167A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. AIMS: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. METHODS AND RESULTS: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. CONCLUSIONS: AlbF is the first apparent single-component antibiotic-specific efflux pump from a gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. SIGNIFICANCE AND IMPACT OF THE STUDY: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.200616834602
637040.9155Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs.201829845191
637150.9146Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections.201829464798
600760.9135Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.202134332149
904470.9126Impairment of novel non-coding small RNA00203 inhibits biofilm formation and reduces biofilm-specific antibiotic resistance in Acinetobacter baumannii. Small RNAs (sRNAs) are post-transcriptional regulators of many biological processes in bacteria, including biofilm formation and antibiotic resistance. The mechanisms by which sRNA regulates the biofilm-specific antibiotic resistance in Acinetobacter baumannii have not been reported to date. This study aimed to investigate the influence of sRNA00203 (53 nucleotides) on biofilm formation, antibiotic susceptibility, and expression of genes associated with biofilm formation and antibiotic resistance. The results showed that deletion of the sRNA00203-encoding gene decreased the biomass of biofilm by 85%. Deletion of the sRNA00203-encoding gene also reduced the minimum biofilm inhibitory concentrations for imipenem and ciprofloxacin 1024- and 128-fold, respectively. Knocking out of sRNA00203 significantly downregulated genes involved in biofilm matrix synthesis (pgaB), efflux pump production (novel00738), lipopolysaccharide biosynthesis (novel00626), preprotein translocase subunit (secA) and the CRP transcriptional regulator. Overall, the suppression of sRNA00203 in an A. baumannii ST1894 strain impaired biofilm formation and sensitized the biofilm cells to imipenem and ciprofloxacin. As sRNA00203 was found to be conserved in A. baumannii, a therapeutic strategy targeting sRNA00203 may be a potential solution for the treatment of biofilm-associated infections caused by A. baumannii. To the best of the authors' knowledge, this is the first study to show the impact of sRNA00203 on biofilm formation and biofilm-specific antibiotic resistance in A. baumannii.202337315907
904680.9125Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells.201627702426
774590.9124Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.202337030222
8733100.9122Enhanced anti-herbivore defense of tomato plants against Spodoptera litura by their rhizosphere bacteria. BACKGROUND: The use of beneficial microorganisms as an alternative for pest control has gained increasing attention. The objective of this study was to screen beneficial rhizosphere bacteria with the ability to enhance tomato anti-herbivore resistance. RESULTS: Rhizosphere bacteria in tomato field from Fuqing, one of the four locations where rhizosphere bacteria were collected in Fujian, China, enhanced tomato resistance against the tobacco cutworm Spodoptera litura, an important polyphagous pest. Inoculation with the isolate T6-4 obtained from the rhizosphere of tomato field in Fuqing reduced leaf damage and weight gain of S. litura larvae fed on the leaves of inoculated tomato plants by 27% in relative to control. Analysis of 16S rRNA gene sequence identities indicated that the isolate T6-4 was closely related to Stenotrophomonas rhizophila supported with 99.37% sequence similarity. In the presence of S. litura infestation, inoculation with the bacterium led to increases by a 66.9% increase in protease inhibitor activity, 53% in peroxidase activity and 80% in polyphenol oxidase activity in the leaves of inoculated plants as compared to the un-inoculated control. Moreover, the expression levels of defense-related genes encoding allene oxide cyclase (AOC), allene oxide synthase (AOS), lipoxygenase D (LOXD) and proteinase inhibitor (PI-II) in tomato leaves were induced 2.2-, 1.7-, 1.4- and 2.7-fold, respectively by T6-4 inoculation. CONCLUSION: These results showed that the tomato rhizosphere soils harbor beneficial bacteria that can systemically induce jasmonate-dependent anti-herbivore resistance in tomato plants.202235606741
2274110.9122Contribution of genetic factors towards cefotaxime and ciprofloxacin resistance development among Extended spectrum beta-lactamase producing-Quinolone resistant pathogenic Enterobacteriaceae. β-lactams and quinolones are widely utilised to treat pathogenic Enterobacterial isolates worldwide. Due to improper use of these antibiotics, both ESBL producing and quinolone resistant (ESBL-QR) pathogenic bacteria have emerged. Nature of contribution of beta-lactamase (bla)/quinolone resistant (QR) genes, efflux pumps (AcrAB-TolC) over-expression and outer membrane proteins (OMPs) /porin loss/reduction and their combinations towards development of this phenotype were explored in this study. Kirby-Bauer disc diffusion method was used for phenotypic characterization of these bacteria and minimum inhibitory concentration of cefotaxime and ciprofloxacin was determined by broth micro dilution assay. Presence of bla, QR, gyrA/B genes was examined by PCR; acrB upregulation by real-time quantitative PCR and porin loss/reduction by SDS-PAGE. Based on antibiogram, phenotypic categorization of 715 non-duplicate clinical isolates was: ESBL(+)QR(+) (n = 265), ESBL(+)QR(-) (n = 6), ESBL(-)QR(+) (n = 346) and ESBL(-)QR(-)(n = 11). Increased OmpF/K35 and OmpC/K36 reduction, acrB up-regulation, prevalence of bla, QR genes and gyrA/B mutation was observed among the groups in following order: ESBL(+)QR(+)> ESBL(-)QR(+)> ESBL(+)QR-> ESBL(-)QR(-). Presence of bla gene alone or combined porin loss and efflux pump upregulation or their combination contributed most for development of a highest level of cefotaxime resistance of ESBL(+)QR(+) isolates. Similarly, combined presence of QR genes, porin loss/reduction, efflux pump upregulation and gyrA/B mutation contributed towards highest ciprofloxacin resistance development of these isolates.202437884102
8797120.9120Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Bacteroides fragilis constitutes 1-2% of the natural microbiota of the human digestive tract and is the predominant anaerobic opportunistic pathogen in gastrointestinal infections. Most bacteria use quorum sensing (QS) to monitor cell density in relation to other cells and their environment. In Gram-negative bacteria, the LuxRI system is common. The luxR gene encodes a transcriptional activator inducible by type I acyl-homoserine lactone autoinducers (e.g., N-[3-oxohexanoyl] homoserine lactone and hexanoyl homoserine lactone [C6-HSL]). This study investigated the presence of QS system(s) in B. fragilis. The genome of American-type culture collection strain no. ATCC25285 was searched for QS genes. The strain was grown to late exponential phase in the presence or absence of synthetic C6-HSL and C8-HSL or natural homoserine lactones from cell-free supernatants from spent growth cultures of other bacteria. Growth, susceptibility to antimicrobial agents, efflux pump gene (bmeB) expression, and biofilm formation were measured. Nine luxR and no luxI orthologues were found. C6-HSL and supernatants from Yersinia enterocolitica, Vibrio cholerae, and Pseudomonas aeruginosa caused a significant (1) reduction in cellular density and (2) increases in expression of four putative luxR genes, bmeB3, bmeB6, bmeB7, and bmeB10, resistance to various antibiotics, which was reduced by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP, an uncoupler that dissipates the transmembrane proton gradient, which is also the driving force of resistance nodulation division efflux pumps) and (3) increase in biofilm formation. Susceptibility of ATCC25285 to C6-HSL was also reduced by CCCP. These data suggest that (1) B. fragilis contains putative luxR orthologues, which could respond to exogenous homoserine lactones and modulate biofilm formation, bmeB efflux pump expression, and susceptibility to antibiotics, and (2) BmeB efflux pumps could transport homoserine lactones.200818188535
8721130.9118Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. OBJECTIVE: Serratia sp. S2 is a wild strain with chromium resistance and reduction ability. Chromium(VI) metabolic-protein-coding gene ChrA and ChrT were cloned from Serratia sp. S2, and ligated with prokaryotic expression vectors pET-28a (+) and transformed into E. coli BL21 to construct ChrA, ChrT and ChrAT engineered bacteria. By studying the characteristics of Cr(VI) metabolism in engineered bacteria, the function and mechanism of the sole expression and coexpression of ChrA and ChrT genes were studied. METHODS: Using Serratia sp. S2 genome as template, ChrA and ChrT genes were amplified by PCR, and prokaryotic expression vectors was ligated to form the recombinant plasmid pET-28a (+)-ChrA, pET-28a (+)-ChrT and pET-28a (+)-ChrAT, and transformed into E. coli BL21 to construct ChrA, ChrT, ChrAT engineered bacteria. The growth curve, tolerance, and reduction of Cr(VI), the distribution of intracellular and extracellular Cr, activity of chromium reductase and intracellular oxidative stress in engineered bacteria were measured to explore the metabolic characteristics of Cr(VI) in ChrA, ChrT, ChrAT engineered bacteria. RESULTS: ChrA, ChrT and ChrAT engineered bacteria were successfully constructed by gene recombination technology. The tolerance to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrA > ChrT > Control (P < 0.05), and the reduction ability to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrT > ChrA (P < 0.05). The chromium distribution experiments confirmed that Cr(VI) and Cr(III) were the main valence states. Effect of electron donors on chromium reductase activity was NADPH > NADH > non-NAD(P)H (P < 0.05). The activity of chromium reductase increased significantly with NAD(P)H (P < 0.05). The Glutathione and NPSH (Non-protein Sulfhydryl) levels of ChrA, ChrAT engineered bacteria increased significantly (P < 0.05) under the condition of Cr(VI), but there was no significant difference in the indexes of ChrT engineered bacteria (P > 0.05). CONCLUSION: ChrAT engineered bacteria possesses resistance and reduction abilities of Cr(VI). ChrA protein endows the strain with the ability to resist Cr(VI). ChrT protein reduces Cr(VI) to Cr(III) by using NAD(P)H as electronic donor. The reduction process promotes the production of GSH, GSSG and NPSH to maintain the intracellular reduction state, which further improves the Cr(VI) tolerance and reduction ability of ChrAT engineered bacteria.202032768747
5751140.9117The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. AIM: Emergence of extended-spectrum beta-lactamase (ESBL) producing with quinolone-resistant (QR) pathogenic Enterobacteriaceae augmented the need to establish therapeutic options against them. Present study aimed towards determination of synergistic combination of eugenol (EG) with cefotaxime (CTX) and ciprofloxacin (CIP) to combat against this resistance and potentiation of antibacterial drugs by EG against these bacteria. METHODS AND RESULTS: Synergistic interaction between EG and CTX/CIP (FICI: 0·08-0·5) were observed among ESBL-QR bacteria using checkerboard assay. Approximately, 2- to 1024-fold minimum inhibitory concentration value reduction and 17- to 165 030-fold dose reduction index strongly suggested synergistic interaction between EG and antibiotics. Cell viability assay showed reduction in log(10) CFU per ml from 16·6 to 3·1 at synergistic concentration. Scanning electron microscopy further proved disruptive effect of EG on cell architecture. Eugenol and/or its combination also altered genes' expressions that imparted antibiotic resistance by ~1·6 to ~1226 folds. CONCLUSIONS: Reduced doses of antibiotics, bacterial morphological alterations, efflux pump down regulation, porin over expression and beta-lactamase gene inhibition of ESBL-QR bacteria by EG alone or in combination with CTX/CIP might have reversed antibiotic resistance profile of ESBL-QR bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided a molecular insight into action of EG and/with CTX and CIP, which might have potentiated antibiotic's activity against ESBL-QR bacteria.202032502298
7832150.9116Reduction of antibiotics and antibiotic resistance genes in simulated-sunlight-supported counter-diffusion bacteria-Algae biofilms: Interface properties and functional gene responses. A novel bacteria-algae symbiotic counter-diffusion biofilm system integrated within simulated-sunlight (designated UV-MABAR) was engineered to simultaneously address antibiotic residuals and antibiotic resistance genes (ARGs) while maintaining functional microbial consortia under simulated solar irradiation. The non-algal control system (UV-MABR) demonstrated elevated repulsion energy barriers accompanied by significant suppression of ATP synthase (p < 0.01) and DNA repair-related gene clusters, leading to biofilm homeostasis disruption and subsequent sulfamethoxazole (SMX) effluent accumulation peaking at 138.11±2.34 μg/L. In contrast, the UV-MABAR configuration exhibited dynamic quenching of tyrosine-associated fluorescence moieties within extracellular polymeric substances, thereby diminishing complexation potential with SMX aromatic rings and achieving 70.75 %±3.21 % abiotic photodegradation efficiency, which substantially curtailed ARG proliferation pathways, promoting a significant downregulation of sul1 (-1.9 log(2) fold-change) and sul2 (-1.1 log(2) fold-change) expression compared to conventional MABR controls. Besides, algal in UV-MABAR attenuated the irradiation-induced α-helix/(β-sheet + random coil) conformational shift, moderating biofilm matrix compaction. Crucially, algal proliferation up-regulated bacterial recA expression (1.7-fold increase), thereby preserving catabolic gene integrity and preventing endogenous substances release. These protective measures kept effluent concentrations of SMX, NH(4)(+)-N, total nitrogen, and COD in UV-MABAR at 19.84 μg/L, 3.88 mg/L, 12.76 mg/L, and 34.97 mg/L, respectively, during 150 days of operation.202540738088
1473160.9114Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
646170.9113Identification of 2 hypothetical genes involved in Neisseria meningitidis cathelicidin resistance. Cathelicidins play a pivotal role in innate immunity, providing a first barrier against bacterial infections at both mucosal and systemic sites. In this work, we have investigated the mechanisms by which Neisseria meningitidis serogroup B (MenB) survives at the physiological concentrations of human and mouse cathelicidin LL37 and CRAMP, respectively. By analyzing the global transcription profile of MenB in the presence or absence of CRAMP, 21 genes were found to be differentially expressed. Among these genes, the hypothetical genes NMB0741 and NMB1828 were up-regulated. When either of the 2 genes was deleted, MenB resistance to cathelicidins was impaired in vitro. Furthermore, the deletion of either of the 2 genes substantially reduced MenB virulence, as measured by the number of bacteria found in the blood of infected animals. Altogether, these results indicate that NMB0741 and NMB1828 are novel genes that have never been described before and that are involved in MenB cathelicidin resistance.200818462162
6369180.9113Association of furanone C-30 with biofilm formation & antibiotic resistance in Pseudomonas aeruginosa. BACKGROUND & OBJECTIVES: Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial bloodstream infections in humans. This study was aimed to explore the association of furanone C-30 with biofilm formation, quorum sensing (QS) system and antibiotic resistance in P. aeruginosa. METHODS: An in vitro model of P. aeruginosa bacterial biofilm was established using the standard P. aeruginosa strain (PAO-1). After treatment with 2.5 and 5 μg/ml of furanone C-30, the change of biofilm morphology of PAO-1 was observed, and the expression levels of QS-regulated virulence genes (lasB, rhlA and phzA2), QS receptor genes (lasR, rhlR and pqsR) as well as QS signal molecule synthase genes (lasI, rhlI, pqsE and pqsH) were determined. Besides, the AmpC expression was quantified in planktonic and mature biofilm induced by antibiotics. RESULTS: Furanone C-30 treatment significantly inhibited biofilm formation in a dose-dependent manner. With the increase of furanone C-30 concentration, the expression levels of lasB, rhlA, phzA2, pqsR, lasI, rhlI pqsE and pqsH significantly decreased in mature biofilm bacteria while the expression levels of lasR and rhlR markedly increased. The AmpC expression was significantly decreased in both planktonic and biofilm bacteria induced by imipenem and ceftazidime. INTERPRETATION & CONCLUSIONS: Furanone C-30 may inhibit biofilm formation and antibiotic resistance in P. aeruginosa through regulating QS genes. The inhibitory effect of furanone C-30 on las system appeared to be stronger than that on rhl system. Further studies need to be done with different strains of P. aeruginosa to confirm our findings.201829998876
808190.9110Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H(2)O(2)) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response.202438305908