CHIRONOMIDAE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
742300.9078Chironomidae larvae: A neglected enricher of antibiotic resistance genes in the food chain of freshwater environments. Infection caused by pathogenic bacteria carrying antibiotic resistance genes (ARGs) is a serious challenge to human health. Water environment, including water and surface sediments, is an important repository of ARGs, and the activity of aquatic animal can affect the development of ARG pollution in the water environment. Macrobenthic invertebrates are an important component of aquatic ecosystems, and their effects on ARG development in aquatic environments remain unreported. The distribution of ARGs, including tetA gene, sul2 gene, and kan gene, in Chironomidae larvae is demonstrated in this study for the first time. The ARG distribution was related to sampling points, metal elements, and seasons. Animal models demonstrated that Chironomidae larvae enriched ARGs from water and passed them on to downstream predators in the food chain. Conjugative transfer mediated by resistant plasmids was crucial in the spread of ARG in Chironomidae larvae, and upregulated expression of trfAp gene and trbBp gene was the molecular mechanism. Escherichia in Proteobacteria and Flavobacterium in Bacteroidetes, which are gram-negative bacteria in Chironomidae larvae, are the primary host bacteria of ARGs confirmed via resistance screening and DNA sequencing of V4 region of 16S rRNA gene. Feeding experiments further confirmed that ARGs from Chironomidae larvae can be enriched in the fish gut. Research gaps in food chain between sediments and fish are addressed in this study, and Chironomidae larvae is an important enricher of ARGs in the freshwater environment.202134098457
672110.9048Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Bacteria can develop resistance to antibiotics, but little is known about their ability to increase resistance to chemical disinfectants. This study randomly sampled 3 automated endoscope reprocessors in the United States using aldehydes for endoscope disinfection. Bacterial contamination was found after disinfection in all automated endoscope reprocessors, and some mycobacteria isolates demonstrated significant resistance to glutaraldehyde and ortho-phthaldehyde disinfectants. Bacteria can survive aldehyde-based disinfection and may pose a cross-contamination risk to patients.201222325730
679220.9038Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.202438759465
600230.9037Comparative analysis of intestinal microbiota composition and transcriptome in diploid and triploid Carassius auratus. Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome changes, and disease resistance in triploid Carassius auratus (3nCC). In China's central Dongting lake water system, diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism underlying disease resistance after triploidization.202336593453
854640.9036A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Emerging organic contaminants (EOCs) include a diverse group of chemical compounds, such as pharmaceuticals and personal care products (PPCPs), pesticides, hormones, surfactants, flame retardants and plasticizers. Many of these compounds are not significantly removed in conventional wastewater treatment plants and are discharged to the environment, presenting an increasing threat to both humans and natural ecosystems. Recently, antibiotics have received considerable attention due to growing microbial antibiotic-resistance in the environment. Constructed wetlands (CWs) have proven effective in removing many EOCs, including different antibiotics, before discharge of treated wastewater into the environment. Wastewater treatment systems that couple conventional treatment plants with constructed and natural wetlands offer a strategy to remove EOCs and reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) far more efficiently than conventional treatment alone. This review presents as overview of the current knowledge on the efficiency of different wetland systems in reducing EOCs and antibiotic resistance.202032247686
812650.9034Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective. Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments.202540570627
854560.9033Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes - A review. Currently, anaerobic sludge digestion (ASD) is considered not only for treating residual sewage sludge and energy recovery but also for the reduction of antibiotic resistance genes (ARGs). The current review highlights the reasons why antibiotic resistant bacteria (ARB) and ARGs exist in ASD and how ASD performs in the reduction of ARB and ARGs. ARGs and ARB have been detected in ASD with some reports indicating some of the ARGs can be completely removed during the ASD process, while other studies reported the enrichment of ARB and ARGs after ASD. This paper reviews the performance of ASD based on operational parameters as well as environmental chemistry. More studies are needed to improve the performance of ASD in reducing ARGs that are difficult to handle and also differentiate between extracellular (eARGs) and intracellular ARGs (iARGs) to achieve more accurate quantification of the ARGs.202133735726
743770.9031Bacteriophages vehiculate a high amount of antibiotic resistance determinants of bacterial origin in the Orne River ecosystem. Aquatic environments are important dissemination routes of antibiotic resistance genes (ARGs) from and to pathogenic bacteria. Nevertheless, in these complex matrices, identifying and characterizing the driving microbial actors and ARG dissemination mechanisms they are involved in remain difficult. We here explored the distribution/compartmentalization of a panel of ARGs and mobile genetic elements (MGEs) in bacteria and bacteriophages collected in the water, suspended material and surface sediments from the Orne River ecosystem (France). By using a new bacteriophage DNA extraction method, we showed that, when packaging bacterial DNA, bacteriophages rather encapsidate both ARGs and MGEs than 16S rRNA genes, i.e. chromosomal fragments. We also show that the bacteria and bacteriophage capsid contents in ARGs/MGEs were similarly influenced by seasonality but that the distribution of ARGs/MGEs between the river physical compartments (water vs. suspended mater vs. sediment) is more impacted when these markers were carried by bacteria. These demonstrations will likely modify our understanding of the formation and fate of transducing viral particles in the environment. Consequently, they will also likely modify our estimations of the relative frequencies of the different horizontal gene transfer mechanisms in disseminating antibiotic resistance by reinforcing the roles played by environmental bacteriophages and transduction.202235672875
735180.9030Dynamics of integron structures across a wastewater network - Implications to resistance gene transfer. Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.e., that target human-impacted structures, i.e., clintI1) poorly delineate clintI1 from non-impacted class 1 integron structures. They also say nothing about their ARG content. To fill these technical gaps, new real-time qPCR assays were developed for "impacted" class 1 structures (called aint1; i.e., anthropogenic class 1 integrons) and empty aint1 structures (i.e., carry no ARGs; called eaint1). The new assays and other integron assays then were used to examine integron dynamics across a wastewater network. 16S metagenomic sequencing also was performed to characterise associated microbiomes. aint1 abundances per bacterial cell were about 10 times greater in hospital wastewaters compared with other compartments, suggesting aint1 enrichment with ARGs in hospital sources. Conversely, the relative abundance of eaint1 structures were over double in recycled activated sludge compared with other compartments, except receiving waters (RAS; ∼30% of RAS class 1 structures did not carry ARGs). Microbiome analysis showed that human-associated bacterial taxa with mobile integrons also differed in RAS and river sediments. Further, class 1 integrons in RAS bacteria appear to have released ARGs, whereas hospital bacteria have accumulated ARGs. Results show that quantifying integron dynamics can help explain where ARG transfer occurs in wastewater networks, and should be considered in future studies on antibiotic resistance in the environment.202134673462
647390.9029The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation.201728689129
6407100.9029Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.201323396083
6417110.9028Fate of environmental pollutants: A review. A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes.202032671926
3056120.9027Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. A plasmid-borne gene mediating trimethoprim resistance, dhfrIX, newly found among porcine strains of Escherichia coli, was observed at a frequency of 11% among trimethoprim-resistant veterinary isolates. This rather high frequency of dhfrIX could be due to the extensive use of trimethoprim in veterinary practice in Sweden. After searching several hundred clinical isolates, one human E. coli strain was also found to harbor the dhfrIX gene. Thus, the dhfrIX gene seems to have spread from porcine bacteria to human pathogens. Furthermore, the occurrence of other genes coding for resistant dihydrofolate reductase enzymes (dhfrI, dhfrII, dhfrV, dhfrVII, and dhfrVIII) among the porcine isolates was investigated. In addition, association of dhfr genes with the integraselike open reading frames of transposons Tn7 and Tn21 was studied. In colony hybridization experiments, both dhfrI and dhfrII were found associated with these integrase genes. The most common combination was dhfrI and int-Tn7, indicating a high prevalence of Tn7.19921482138
6526130.9027The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.202436582150
6416140.9026Antibiotic resistance in plastisphere. Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation.202540265125
6791150.9025Microplastics in marine pollution: Oceanic hitchhikers for the global dissemination of antimicrobial-resistant bacteria. Microplastics (MPs) are globally anthropogenic contaminants of marine environments. Bacteria can colonize MPs forming biofilms that constitute the plastisphere. Carbapenem-resistant bacteria in plastisphere could be a hidden threat for marine life. The role of MPs in the spread of AMR bacteria/genes deserves global investigation.202540469541
6472160.9025Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences.201424279909
9996170.9024In Situ Localization of Staphylococcus shinii and Staphylococcus succinus in Infected Rhipicephalus microplus Ticks: Implications for Biocontrol Strategies. Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené's organ infection was detected only in S. succinus. Our findings offer valuable insights for developing biocontrol strategies to manage Rhipicephalus microplus populations effectively.202439770285
6395180.9023Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.202336933744
6421190.9022A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies.202235439559