CHINESE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
135400.9960The prevalence, antibiotic resistance and multilocus sequence typing of colistin-resistant bacteria isolated from Penaeus vannamei farms in earthen ponds and HDPE film-lined ponds in China. The aquaculture environment, especially the culture ponds and aquaculture products, is considered to be an important reservoir of colistin resistance genes. However, systematic investigations of colistin resistance in Penaeus vannamei farming in different culture modes are scarce. In this study, a total of 93 non-duplicated samples were collected from P. vannamei farms in five cities in China from 2019 to 2021. The prevalence, antibiotic resistance and multilocus sequence typing (MLST) of colistin-resistant bacteria were measured and analysed. The results showed that among the 1601 isolates in P. vannamei and its environmental samples, the pollution of colistin-resistant bacteria was serious (the overall prevalence was 37.3% and 28.8%, respectively), regardless of the earthen pond or high-density polyethylene (HDPE) film-lined pond. Among 533 isolates, the prevalence of mobile colistin resistance (mcr) genes, mcr-1, was the highest (60%, 320/533), followed by mcr-4 (1.5%, 8/533), mcr-8 (0.9%, 5/533), mcr-10 (0.6%, 3/533) and mcr-7 (0.4%, 2/533). The prevalence of mcr-1 in earthen ponds was significantly higher than that in HDPE film-lined ponds (67.5% vs. 49.1%, p < .001). The dominant strain carrying mcr-1 was Bacillus spp. (54.1%, 173/320), followed by Enterobacter spp. (8.1%, 26/320), Staphylococcus spp. (6.3%, 20/320) and Aeromonas spp. (5.3%, 17/320). The antibiotic resistance profiles of 173 Bacillus spp. varied among different sampling locations and culture types. These isolates were highly resistant to cefepime, ceftriaxone, trimethoprim-sulfamethoxazole and ceftiofur (>45%), and multidrug-resistant isolates were common (62.4%, 108/173). Sequence type (ST) 26 (37/66, 56%) was found to be the most prevalent ST in mcr-1-positive Bacillus cereus isolated from the aquaculture environment. In summary, our study pointed out that it is necessary to continuously monitor antibiotic usage and its residues regardless of the pond types, especially with regard to critical drugs such as colistin.202235841601
129610.9960Prevalence and antimicrobial resistance of Salmonellaisolates from goose farms in Northeast China. BACKGROUND: Salmonella is one of the most important enteric pathogenic bacteria that threatened poultry health. AIMS: This study aimed to investigate the prevalence and antimicrobial resistance of Salmonella isolates in goose farms. METHODS: A total of 244 cloacal swabs were collected from goose farms to detect Salmonella in Northeast China. Antimicrobial susceptibility, and resistance gene distribution of Salmonella isolates were investigated. RESULTS: Twenty-one Salmonella isolates were identified. Overall prevalence of Salmonella in the present study was 8.6%. Among the Salmonella isolates, the highest resistance frequencies belonged to amoxicillin (AMX) (85.7%), tetracycline (TET) and trimethoprim/sulfamethoxazole (SXT) (81%), followed by chloramphenicol (CHL) (76.2%), florfenicol (FLO) (71.4%), kanamycin (KAN) (47.6%), and gentamycin (GEN) (38.1%). Meanwhile, only 4.8% of the isolates were resistant to ciprofloxacin (CIP) and cefotaxime (CTX). None of the isolates was resistant to cefoperazone (CFP) and colistin B (CLB). Twenty isolates (95%) were simultaneously resistant to at least two antimicrobials. Ten resistance genes were detected among which the bla (TEM-1), cmlA, aac(6')-Ib-cr, sul1, sul2, sul3, and mcr-1.1 were the most prevalent, and presented in all 21 isolates followed by tetB (20/21), qnrB (19/21), and floR (15/21). CONCLUSION: Results indicated that Salmonella isolates from goose farms in Northeast China exhibited multi-drug resistance (MDR), harboring multiple antimicrobial resistance genes. Our results will be useful to design prevention and therapeutic strategies against Salmonella infection in goose farms.202033584841
128420.9959Research Note: Molecular characterization of antimicrobial resistance and virulence gene analysis of Enterococcus faecalis in poultry in Tai'an, China. Enterococcus faecalis (E. faecalis) is a zoonotic pathogen that causes severe economic losses in the poultry-breeding industry. In our study, cecal samples from broilers with cecal enlargement at slaughterhouses in Tai'an, China, were analyzed. The results revealed that the 61 E. faecalis strains had drug resistance rates ranging from 96.72 to 8.20% against 11 antibiotics in 5 classes, of which erythromycin (96.72%) and tetracycline (96.72%) had the highest rates and vancomycin (8.20%) the lowest. The highest detection rate of multiple drug-resistant strains in 61 isolates was 72.13%. The results of polymerase chain reaction showed that, of the 12 virulence genes, ccf had the highest detection rate (80.33%), followed by asal and cob (both 78.69%), whereas hyl had the lowest (6.56%). Among 15 drug resistance genes, ermB had the highest detection rate (95.08%), followed by tetM (91.80%) and tetL (90.16%), whereas tetK (0.00%) and vanB (0.00%) remained undetected. Of the 34 sequence types found with multilocus sequence typing, the most predominant were ST631 (13.11%, 8/61) and ST634 (8.2%, 5/61). Our results provide a theoretical basis for guiding the rational use of antibiotics and preventing the spread of drug-resistant bacteria, along with epidemiological data for the risk analysis of food-borne bacteria and antimicrobial resistance in poultry farms in Shandong Province.202235263706
137930.9959Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. To better understand the antibiotic resistance, virulence genes, and some related drug-resistance genes of Vibrio parahaemolyticus in farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions, Fujian province, we collected and isolated a total of 102 strains of V. parahaemolyticus from farmed pacific white shrimp in three different areas of Ningde in 2022. The Kirby-Bauer disk method was used to detect V. parahaemolyticus resistance to 22 antibiotics, and resistant genes (such as quinolones (qnrVC136, qnrVC457, qnrA), tetracyclines (tet A, tetM, tetB), sulfonamides (sulI, sulII, sulIII), aminoglycosides (strA, strB), phenicols (cat, optrA, floR, cfr), β-lactams (carB), and macrolides (erm)) were detected by using PCR. The findings in this study revealed that V. parahaemolyticus was most resistant to sulfamoxazole, rifampicin, and erythromycin, with resistance rates of 56.9%, 36.3%, and 33.3%, respectively. Flufenicol, chloramphenicol, and ofloxacin susceptibility rates were 97.1%, 94.1%, and 92.2%, respectively. In all, 46% of the bacteria tested positive for multi-drug resistance. The virulence gene test revealed that all bacteria lacked the tdh and trh genes. Furthermore, 91.84% and 52.04% of the isolates were largely mediated by cat and sulII, respectively, with less than 5% resistance to aminoglycosides and macrolides. There was a clear mismatch between the antimicrobial resistance phenotypes and genotypes, indicating the complexities of V. parahaemolyticus resistance.202438257979
129540.9958Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas.200919168331
134250.9957Prevalence, Toxin Genes, and Antibiotic Resistance Profiles of Bacillus cereus Isolates from Spices in Antalya and Isparta Provinces in Türkiye. Bacillus cereus is a pathogenic bacterium commonly found in nature and can produce toxins that cause food poisoning. This study aimed to detect the prevalence of B. cereus group bacteria in 50 unpackaged and 20 packaged spice samples frequently used as flavoring in Turkish cuisine, as well as investigate the presence of toxin genes and antibiotic resistance in the isolates. A total of 48 B. cereus group bacteria were isolated from 27 of 70 (38.57%) spice samples. The prevalence of B. cereus group bacteria in packaged (25%, 5/20) and unpackaged (44%, 22/50) spice samples did not differ significantly (P ˃ 0.05). All B. cereus group isolates were identified as B. cereus sensu stricto (B. cereus) using molecular methods. The hemolytic activity tests revealed that the most strains (44/48, 91.67%) are β-hemolytic. The distributions of toxin genes in isolates were investigated by PCR. It was determined that all isolates were identified to have 2-8 toxin genes, except B. cereus SBC3. The three most common toxin genes were found to be nheA (47/48, 97.92%), nheB (46/48, 95.83%), and entFM (46/48, 95.83%). All B. cereus isolates were susceptible to linezolid and vancomycin, while 35.42% (17/48) showed resistance to erythromycin. Multi-drug resistance (MDR) was detected in 8.3% (4/48) of B. cereus isolates, while 33.33% of the isolates showed multiple antibiotic resistance (MAR) index values higher than 0.2. The findings indicate that B. cereus may pose a health risk in packaged and unpackaged spices if present in high quantities. Therefore, the presence of B. cereus strains in both packaged and unpackaged spices should be monitored regarding consumer health and product safety.202338031610
540460.9957Characterization of tetracycline resistance lactobacilli isolated from swine intestines at western area of Taiwan. To investigate the frequency of tetracycline resistance (Tet-R) lactobacilli in pig intestines, a total of 256 pig colons were analyzed and found to contain typical colonies of Tet-R lactic acid bacteria in every sample, ranging from 3.2 × 10(3) to 6.6 × 10(5) CFU/cm(2). From these samples, a total of 159 isolates of Tet-R lactobacilli were obtained and identified as belonging to 11 species, including Lactobacillus reuteri, Lactobacillus amylovorus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus ruminis, Lactobacillus kefiri, Lactobacillus fermentum, Lactobacillus sakei, Lactobacillus coryniformis, Lactobacillus parabuchneri and Lactobacillus letivazi. Based on the EFSA (2008) breakpoints, all isolates, after MIC analysis, were qualified as Tet-R, from which the significant high Tet-R MIC(50) and MIC(90) values indicated an ecological distribution of Tet-R lactobacilli mostly with high resistance potency in pig colons. PCR-detection identified 5 tet genes in these isolates, the most predominant one being tet (W), followed by tet (M), (L), (K), and (Q). Their detection rates were 82.0%, 22.5%, 14.4%, 8.1% and 0.9%, respectively. Noteworthily, isolates of the same species carrying identical tet gene(s) usually had a wide different MIC values. Furthermore, strain-subtyping of these isolates by REP-PCR demonstrated a notable genotypic biodiversity % (average = 62%).201121906691
122370.9956Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics.201425052999
348480.9956Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.201930952342
136190.9956Multi-drug resistance and diversity of mobile genetic elements in Escherichia coli isolated from migratory bird in Poyang Lake. With the spread of antibiotic resistance genes such as blaCTX-M-2, dfrA1 and blaNDM-1, the problem of drug resistance in E. coli is becoming increasingly serious [1]. This study aimed to identify integrons genes and MGEs in E. coli isolated from migratory birds' feces at Poyang Lake, Jiangxi Province, focusing on their role in antimicrobial resistance (AMR). The 114 isolated E. coli strains were tested by standard disk diffusion method and genetic testing method. Results showed 64.04 % (73/114) of isolates were multi-drug resistance (MDR), mainly resistant to 3-6 antibiotics. Common resistances included neomycin (50 %) and streptomycin (48.25 %). We detected 21 mobile genetic elements, including IS903 (92.11 %), traA (72.81 %), ISCR3 (64.91 %), and ISpa7 (50 %). These elements were present in all isolates, forming 112 combinations. Significant differences in resistance rates were found between class I integron-positive and negative strains for doxycycline, tetracycline, bacitracin, and streptomycin (P < 0.01), and for neomycin (P < 0.05). Class II integron-positive bacteria showed higher resistance to doxycycline (P < 0.01) and ceftizoxime (P < 0.05). No significant differences were observed for class III integron-positive strains. This study underscores the prevalence of multidrug-resistant and the diversity of mobile genetic elements in E. coli, emphasizing the need for continuous monitoring.202540651621
1341100.9956Campylobacter jejuni from no antibiotics ever (NAE) broilers: prevalence, antibiotic resistance, and virulence genes analysis. Campylobacter jejuni (C. jejuni) is a leading foodborne illness causing bacteria, and poultry is a major reservoir of this pathogen. With the recent increase in broiler production under the "no antibiotics ever" (NAE) system, this study aimed to assess the prevalence, antibiotic resistance, and virulence characteristics of C. jejuni isolated from NAE raised broilers. A total of 270 cloacal swabs were collected from the live-hang areas of 3 commercial processing plants over 9 wk. Each processing plant was visited 3 times at a 1-wk interval, and 30 samples were collected per visit. Among the total 270 cloacal swab samples, C. jejuni was isolated from 44 (16.3%) samples . Of these isolates, 65.9% possessed toxin-producing genes cdtA, cdtB, and cdtC, and invasion gene ciaB. The prevalence of antibioitc resistance genes aph (3')-IIIa, erm(B) were 59.1%, and 50%, respectively. Nine (20.45%) C. jejuni isolates were identified as multidrug resistant (MDR), and 18 (40.9%) isolates showed resistance to at least 1 tested antibiotic. The highest resistance was observed against tetracycline (29.5%), followed by nalidixic acid (25%), whereas 22.7% of isolates were resistant to 2 clinically important antibiotics, azithromycin and ciprofloxacin. These results suggest that there ishigh prevalence level of multi-drug resistant C. jejuni with toxin producing virulence genes in the NAE-raised broilers sampled in this study, indicating the potential for serious human illnesses if transmitted through the food chain.202439418794
1285110.9956Antimicrobial Resistance Profiles and Genes in Streptococcus uberis Associated With Bovine Mastitis in Thailand. Streptococcus uberis is recognized as an environmental mastitis pathogen in dairy cattle. The varied success rate of antibiotic treatment for S. uberis intramammary infection may be associated with the antimicrobial resistance (AMR) of these bacteria. This observational study aimed to analyze 228 S. uberis strains associated with bovine mastitis in northern Thailand from 2010 to 2017. AMR and AMR genes were determined by the minimum inhibitory concentration (MIC) using a microdilution method and polymerase chain reaction, respectively. The majority of S. uberis strains were resistant to tetracycline (187/228, 82.02%), followed by ceftiofur (44/228, 19.30%), and erythromycin (19/228, 8.33%). The MIC50 and MIC90 of ceftiofur in 2017 were 2-4-fold higher than those in 2010 (P < 0.01). Resistance to tetracycline and ceftiofur significantly increased between 2010 and 2017 (P < 0.05). The most common gene detected in S. uberis was tetM (199/228, 87.28%), followed by ermB (151/228, 66.23 %) and blaZ (15/228, 6.58 %). The association between tetracycline resistance and tetM detection was statistically significant (P < 0.01). The detection rates of tetM significantly increased, while the detection rates of tetO and ermB significantly decreased during 2010-2017. AMR monitoring for bovine mastitis pathogens, especially S. uberis, is necessary to understand the trend of AMR among mastitis pathogens, which can help create an AMR stewardship program for dairy farms in Thailand.202134485432
5261120.9956Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
1319130.9956Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant. Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes.201627100915
1989140.9955Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. BACKGROUND: Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. METHODS: Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. RESULTS: A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. CONCLUSION: The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association.202439850143
1299150.9955Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health.202134129676
1373160.9955Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Aeromonas spp. are Gram-negative opportunistic bacteria which have been commonly associated with fish diseases. In this study, antibiogram, antimicrobial resistance genes and integrons of 43 zebrafish-borne Aeromonas spp. were studied. The isolates were identified as six Aeromonas species (A. veronii biovar veronii (n = 26), A. veronii biovar sobria (n = 3), A. hydrophila (n = 8), A. caviae (n = 3), A. enteropelogenes (n = 2) and A. dhakensis (n = 1)). Antibiogram of the isolates indicated that most of them were resistant to amoxicillin (100·00%), nalidixic acid (100·00%), oxytetracycline (100·00%), ampicillin (93·02%), tetracycline (74·42%), rifampicin (67·44%) and imipenem (65·15%). Multiple antimicrobial resistance (MAR) index values ranged from 0·19-0·44 to 90·70% isolates showed multidrug resistance. PCR of antimicrobial resistance genes revealed that the tetracycline resistance gene (tetA) was the most predominant (67·44%) among the isolates. The qnrS (53·49%), tetB (30·23%), tetE (30·23%), qnrB (23·26%) and aac(6')-Ib-cr (4·65%) genes were also detected. Class 1 integrase (IntI1) gene was found in 46·51% of the isolates. Two types of class 1 integron gene cassette profiles (qacG-aadA6-qacG and drfA1) were identified. The results showed that zebrafish-borne aeromonads can harbour different types of antimicrobial resistance genes and class 1 integrons. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas spp. are important pathogens found in diverse environments. Antimicrobial resistance genes and integrons of ornamental fish-borne Aeromonas spp. are not well studied. The antibiogram, antimicrobial resistance genes and class 1 integrons of Aeromonas spp. isolated from zebrafish were characterized for the first time in Korea. The prevalence of tetracycline resistance genes, plasmid-mediated quinolone resistance genes and class 1 integron gene cassettes were observed among the isolates. The qacG-aadA6-qacG gene cassette was identified for the first time in Aeromonas spp. The results suggest that the wise use of antimicrobials is necessary for the better management of the ornamental fish.201930790321
2951170.9955The diversity in antimicrobial resistance of MDR Enterobacteriaceae among Chinese broiler and laying farms and two mcr-1 positive plasmids revealed their resistance-transmission risk. This research aimed to investigate the microbial composition and diversity of antimicrobial resistance genes (ARGs) found in Chinese broiler and layer family poultry farms. We focused on the differences in resistance phenotypes and genotypes of multidrug-resistant Enterobacteriaceae (MDRE) isolated from the two farming environments and the existence and transmissibility of colistin resistance gene mcr-1. Metagenomic analysis showed that Firmicutes and Bacteroides were the dominant bacteria in broiler and layer farms. Many aminoglycoside and tetracycline resistance genes were accumulated in these environments, and their absolute abundance was higher in broiler than in layer farms. A total of 526 MDRE were isolated with a similar distribution in both farms. The results of the K-B test showed that the resistance rate to seven antimicrobials including polymyxin B and meropenem in broiler poultry farms was significantly higher than that in layer poultry farms (P ≤ 0.05). PCR screening results revealed that the detection rates of mcr-1, aph(3')Ia, aadA2, bla (oxa-1) , bla (CTX-M) , fosB, qnrD, sul1, tetA, and catA1 in broiler source MDRE were significantly higher than those in layers (P ≤0.05). A chimeric plasmid p20432-mcr which carried the novel integron In1866 was isolated from broiler source MDRE. The high frequency of conjugation (10(-1) to 10(-3)) and a wide range of hosts made p20432-mcr likely to play an essential role in the high detection rate of mcr-1, aph(3')-Ia, and aadA2 in broiler farms. These findings will help optimize disinfection and improve antimicrobial-resistant bacteria surveillance programs in poultry farms, especially broilers.202235992687
1352180.9955Bacterial Diversity and Antimicrobial Resistance of Microorganisms Isolated from Teat Cup Liners in Dairy Farms in Shandong Province, China. Global milk consumption exceeds 800 million tons a year and is still growing. Milk quality and its products are critical to human health. A teat cup makes direct contact with the cow's teats during milking and its cleanliness is very important for the quality of raw milk. In this study, the microorganism from post-milking teat cup liners were collected from six dairy farms in Shandong Province of China, the bacterial species were identified using microbial mass spectrometry, the minimum inhibitory concentrations of the isolated strains against ten antimicrobial agents were determined using the broth microdilution method, and the antimicrobial resistance genes were detected by PCR. The results indicated that the most frequently isolated bacteria in this study were Bacillus licheniformis (39/276, 14.13%), followed by Bacillus pumilus (20/276, 7.25%), Bacillus cereus (17/276, 6.16%), and Bacillus subtili (16/276, 5.80%). The isolates exhibited the highest average resistance to lincomycin (87.37%), followed by sulfadiazine (61.05%) and streptomycin (42.63%); the highest detection rate of resistance genes was Sul1 (55.43%), followed by ant(4') (51.09%), tet(M) (25.36%), bla(KPC) (3.62%) and qnrS (3.62%). These findings imply the necessity for enhanced measures in disinfecting cow udders and milking equipment, highlighting the persistently challenging issue of antimicrobial resistance in Shandong Province.202439123692
5260190.9955Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 10(5) to 5.94 × 10(6) copies/g), blaTEM (1.48 × 10(5) to 2.2 × 10(6) copies/g), ermc (1.01 × 10(5) to 5.35 × 10(5) copies/g), hyg (1.35 × 10(5) to 1.93 × 10(6) copies/g), aadd (4.46 × 10(5) to 1.60 × 10(6) copies/g), nat1 (1.04 × 10(5) to 5.04 × 10(5) copies/g), nptII (2.17 × 10(4) to 1.69 × 10(5) copies/g), sul1 (2.01 × 10(5) to 4.60 × 10(5) copies/g), tetl (1.23 × 10(5) to 6.18 × 10(5) copies/g), shble (1.68 × 10(4) copies/g), and stra (4.8 × 10(4) to 1.9 × 10(5)copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health.202540230011