CHEMOSTATS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
352400.9666Evaluating the effects of chlortetracycline on the proliferation of antibiotic-resistant bacteria in a simulated river water ecosystem. Antibiotics and antibiotic metabolites have been found in the environment, but the biological activities of these compounds are uncertain, especially given the low levels that are typically detected in the environment. The objective of this study was to estimate the selection potential of chlortetracycline (CTC) on the antibiotic resistance of aerobic bacterial populations in a simulated river water ecosystem. Six replicates of a 10-day experiment using river water in continuous flow chemostat systems were conducted. Each replicate used three chemostats, one serving as a control to which no antibiotic was added and the other two receiving low and high doses of CTC (8 microg/liter and 800 microg/liter, respectively). The addition of CTC to the chemostats did not impact the overall level of cultivable aerobic bacteria (P = 0.51). The high-CTC chemostat had significantly higher tetracycline-resistant bacterial colony counts than both the low-CTC and the control chemostats (P < 0.035). The differences in resistance between the low-CTC and control chemostats were highly nonsignificant (P = 0.779). In general a greater diversity of tet resistance genes was detected in the high-CTC chemostat and with a greater frequency than in the low-CTC and control chemostats. Low levels of CTC in this in vitro experiment did not select for increased levels of tetracycline resistance among cultivable aerobic bacteria. This finding should not be equated with the absence of environmental risk, however. Low concentrations of antibiotics in the environment may select for resistant bacterial populations once they are concentrated in sediments or other locations.200717616621
54010.9664Effect of ogt expression on mutation induction by methyl-, ethyl- and propylmethanesulphonate in Escherichia coli K12 strains. We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt+ bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt+ with the closely linked Tetr marker (zcj::Tn10). The delta(ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to L-arabinose resistance (Arar). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt+ bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt- mutant strains and also methylmethanesulphonate mutagenesis in ada- bacteria. A sample of AB1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable.19948152424
813220.9658Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments. The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.201626517996
873530.9658The Effect of Ice-Nucleation-Active Bacteria on Metabolic Regulation in Evergestis extimalis (Scopoli) (Lepidoptera: Pyralidae) Overwintering Larvae on the Qinghai-Tibet Plateau. Evergestis extimalis (Scopoli) is a significant pest of spring oilseed rape in the Qinghai-Tibet Plateau. It has developed resistance to many commonly used insecticides. Therefore, biopesticides should be used to replace the chemical pesticides in pest control. In this study, the effects of ice-nucleation-active (INA) microbes (Pseudomonas syringae 1.7277, P. syringae 1.3200, and Erwinia pyrifoliae 1.3333) on E. extimalis were evaluated. The supercooling points (SCP) were markedly increased due to the INA bacteria application when they were compared to those of the untreated samples. Specifically, the SCP of E. extimalis after its exposure to a high concentration of INA bacteria in February were -10.72 °C, -13.73 °C, and -14.04 °C. Our findings have demonstrated that the trehalase (Tre) genes were up-regulated by the application of the INA bacteria, thereby resulting in an increased trehalase activity. Overall, the INA bacteria could act as effective heterogeneous ice nuclei which could lower the hardiness of E. extimalis to the cold and then freeze them to death in an extremely cold winter. Therefore, the control of insect pests with INA bacteria goes without doubt, in theory.202236292857
721040.9657Managing Beef Backgrounding Residual Soil Contaminants by Alum and Biochar Amendments. Heavy manure-derived contamination of soils can make animal congregating areas nonpoint sources for environmental pollution. In situ soil stabilization is a cost-effective management strategy with a focus on lowering contaminant availability and limiting release to the environment. Soil stabilizing amendments can help mitigate the negative environmental impacts of contaminated soils. In this 2-yr study, we examined the effects of adding no amendment (control) or treating with alum [Al (SO)⋅18HO] or biochar as soil amendments on Mehlich-3 extractable soil P, Cu, and Zn contents, antimicrobial monensin concentrations, total bacteria (16S ribosomal RNA [rRNA] gene), antibiotic resistance genes (1 and B), and Class 1 integrons (1) in an abandoned beef backgrounding setting. The alum reduced soil P (1374 to 1060 mg kg), Cu (7.7 to 3.2 mg kg), and Zn (52.4 to 19.6 mg kg) contents. Both alum and biochar reduced monesin concentrations (1.8 to 0.7 and 2.1 to 1.1 ng g, respectively). All the treatments harbored consistent 16 rRNA concentrations (10 copies g) throughout. The B gene concentration (10 copies g) was lower than either the 1 or the 1 genes (10 copies g), regardless of treatments. However, concentrations of all genes in the soils of animal congregation areas were higher than those in background soils with the least animal impact. In contrast with the effect on other contaminants, the effect of soil amendments on bacteria with antibiotic resistance genes was not biologically significant. Future research should be directed toward evaluating effective alternative methods to mitigate these bacterial populations.201830272780
673250.9656Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria.202032786566
765060.9654Contamination of hay and haylage with enteric bacteria and selected antibiotic resistance genes following fertilization with dairy manure or biosolids. The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In the field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids were applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: at harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than hay from unamended control plots. The fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids resulted in a few gene targets being more abundant in hay during the first harvest. Fermentation of hay resulted in an increase in the abundance of gene targets, but this occurred with hay from both the amended and control plots. Overall, the application of fecal amendments resulted in an increase in the abundance of some gene targets associated with antibiotic resistance in the first cut hay.202235020524
636870.9653Antibacterial effects of curcumin encapsulated in nanoparticles on clinical isolates of Pseudomonas aeruginosa through downregulation of efflux pumps. Curcumin as a flavonoid from the rhizome of Curcuma longa has antibacterial, antiviral and antifungal activity. Multidrug resistance in pathogenic bacteria is continuously increasing in hospitals. The aim of this study was to investigate the effect of curcumin encapsulated in micellar/polymersome nanoparticles as an efflux pump inhibitor (EPI) on the expression of mexX and oprM genes in curcumin-treated and -untreated isolates of Pseudomonas aeruginosa. Clinical isolates of Pseudomonas aeruginosa were treated with ciprofloxacin (sub-MICs) alone and/or in combination with curcumin-encapsulated in micellar/polymersome nanoparticles. The expression of mexX and oprM genes was quantitatively evaluated by qRT-PCR in curcumin-treated and -untreated bacteria after 24 h. Curcumin-encapsulated in nanoparticles (400 µg/mL) induced cell death up to 50% in ciprofloxacin-treated (1/2MIC) resistant isolates during 24 h, while the bacteria treated with ciprofloxacin (without curcumin) were not inhibited. Also, curcumin in different concentrations increased effect of ciprofloxacin (sub-MICs). Downregulation of mexX and oprM genes was observed in cells treated with curcumin and ciprofloxacin compared to cells treated with ciprofloxacin alone. It seems that curcumin can be used as complementary drug in ciprofloxacin-resistant isolates through downregulating genes involved in efflux pumps and trapping ciprofloxacin on bacterial cells and increasing the effects of drug.201930778922
973580.9652Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. Experimental evolution studies have examined coevolutionary dynamics between bacteria and lytic phages, where two models for antagonistic coevolution dominate: arms-race dynamics (ARD) and fluctuating-selection dynamics (FSD). Here, we tested the ability for Pseudomonas aeruginosa to coevolve with phage OMKO1 during 10 passages in the laboratory, whether ARD versus FSD coevolution occurred, and how coevolution affected a predicted phenotypic trade-off between phage resistance and antibiotic sensitivity. We used a unique "deep" sampling design, where 96 bacterial clones per passage were obtained from the three replicate coevolving communities. Next, we examined phenotypic changes in growth ability, susceptibility to phage infection and resistance to antibiotics. Results confirmed that the bacteria and phages coexisted throughout the study with one community undergoing ARD, whereas the other two showed evidence for FSD. Surprisingly, only the ARD bacteria demonstrated the anticipated trade-off. Whole genome sequencing revealed that treatment populations of bacteria accrued more de novo mutations, relative to a control bacterial population. Additionally, coevolved bacteria presented mutations in genes for biosynthesis of flagella, type-IV pilus and lipopolysaccharide, with three mutations fixing contemporaneously with the occurrence of the phenotypic trade-off in the ARD-coevolved bacteria. Our study demonstrates that both ARD and FSD coevolution outcomes are possible in a single interacting bacteria-phage system and that occurrence of predicted phage-driven evolutionary trade-offs may depend on the genetics underlying evolution of phage resistance in bacteria. These results are relevant for the ongoing development of lytic phages, such as OMKO1, in personalized treatment of human patients, as an alternative to antibiotics.202236168737
874290.9650Effect of Bacteria and Bacterial Constituents on Recovery and Resistance of Tulane Virus. Noroviruses encounter numerous and diverse bacterial populations in the host and environment, but the impact of bacteria on norovirus transmission, infection, detection, and inactivation are not well understood. Tulane virus (TV), a human norovirus surrogate, was exposed to viable bacteria, bacterial metabolic products, and bacterial cell constituents and was evaluated for impact on viral recovery, propagation, and inactivation resistance, respectively. TV was incubated with common soil, intestinal, skin, and phyllosphere bacteria, and unbound viruses were recovered by centrifugation and filtration. TV recovery from various bacterial suspensions was not impeded, which suggests a lack of direct, stable binding between viruses and bacteria. The cell-free supernatant (CFS) of Bifidobacterium bifidum 35914, a bacterium that produces glycan-modifying enzymes, was evaluated for effect on the propagation of TV in LLC-MK2 cells. CFS did not limit TV propagation relative to TV absent of CFS. The impact of Escherichia coli O111:B4 lipopolysaccharide (LPS) and Bacillus subtilis peptidoglycan (PEP) on TV thermal and chlorine inactivation resistance was evaluated. PEP increased TV thermal and chlorine inactivation resistance compared with control TV in phosphate-buffered saline (PBS). TV suspended in PBS and LPS was reduced by more than 3.7 log at 60°C, whereas in PEP, TV reduction was approximately 2 log. Chlorine treatment (200 ppm) rendered TV undetectable (>3-log reduction) in PBS and LPS; however, TV was still detected in PEP, reduced by 2.9 log. Virus inactivation studies and food processing practices should account for potential impact of bacteria on viral resistance.202032221571
342100.9650Heat-shock-increased survival to far-UV radiation in Escherichia coli is wavelength dependent. Heat-shock-induced resistance to far-UV (FUV) radiation was studied in Escherichia coli. The induction of FUV resistance was shown to be dependent on the products of the genes uvrA and polA in bacteria irradiated at 254 nm. Heat shock increased the resistance to 280 nm radiation in a uvrA6 recA13 mutant. Heat shock lowered the mutation frequency (reversion to tryptophan proficiency) in wild-type or uvrA strains irradiated at 254 nm. When these strains were irradiated at 280 nm, heat shock did not interfere with the mutation frequency in the wild-type strain, but greatly enhanced mutations in the uvrA mutant. After heat-shock treatment, the wild-type strain irradiated at 254 nm showed increased DNA degradation, indicating enhanced repair activity. However, heat shock did not stimulate SOS repair triggered by FUV. An increased survival of bacteriophages irradiated with FUV and inoculated into heat-shock-treated bacteria was not detected. The possibility that heat shock enhances excision repair activity in a wavelength-dependent manner is discussed.19948176549
8033110.9650Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries.202032050366
7132120.9650Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio. Water from four U.S. utility partners was treated in bench- and pilot-scale treatment trains to simulate DPR with blending. Water was incubated in simulated premise plumbing rigs made of PVC pipe containing brass coupons to measure regrowth of total bacteria (16S rRNA genes, heterotrophic plate count), OPs (Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa), ARGs (qnrA, vanA), and an indicator of horizontal gene transfer and multi-drug resistance (intI1). The microbial community composition was profiled and the resistome (i.e., all ARGs present) was characterized in select samples using next generation sequencing. While regrowth of total bacteria (16S rRNA genes) from the start of the incubation through week eight consistently occurred across tested scenarios (Wilcoxon, p ≤ 0.0001), total bacteria were not more abundant in the water or biofilm of any DPR scenario than in the corresponding conventional potable condition (p ≥ 0.0748). Regrowth of OP marker genes, qnrA, vanA, and intI1 were not significantly greater in water or biofilm for any DPR blends treated with advanced oxidation compared to corresponding potable water (p ≥ 0.1047). This study of initial bacteria colonizing pipes after introduction of blended DPR water revealed little evidence (i.e., one target in one water type) of exacerbated regrowth of total bacteria, OPs, or ARGs in premise plumbing.201930594092
8860130.9649Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria.202032257371
8985140.9649High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. In the mosquito Culex pipiens, insecticide resistance genes alter many life-history traits and incur a fitness cost. Resistance to organophosphate insecticides involves two loci, with each locus coding for a different mechanism of resistance (degradation vs. insensitivity to insecticides). The density of intracellular Wolbachia bacteria has been found to be higher in resistant mosquitoes, regardless of the mechanism involved. To discriminate between costs of resistance due to resistance genes from those associated with elevated Wolbachia densities, we compared strains of mosquito sharing the same genetic background but differing in their resistance alleles and Wolbachia infection status. Life-history traits measured included strength of insecticide resistance, larval mortality, adult female size, fecundity, predation avoidance, mating competition, and strength of cytoplasmic incompatibility (CI). We found that: (1) when Wolbachia are removed, insecticide resistance genes still affect some life-history traits; (2) Wolbachia are capable of modifying the cost of resistance; (3) the cost of Wolbachia infections increases with their density; (4) different interactions occurred depending on the resistance alleles involved; and (5) high densities of Wolbachia do not increase the strength of CI or maternal transmission efficiency relative to low Wolbachia densities. Insecticide resistance genes generated variation in the costs of Wolbachia infections and provided an interesting opportunity to study how these costs evolve, a process generally operating when Wolbachia colonizes a new host.200616610322
7073150.9648Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff.201931589689
6230160.9648dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2. Large numbers of bacteria coexist in the oral cavity. Streptococcus sanguinis, one of the major bacteria in dental plaque, produces hydrogen peroxide (H(2)O(2)), which interferes with the growth of other bacteria. Streptococcus mutans, a cariogenic bacterium, can coexist with S. sanguinis in dental plaque, but to do so, it needs a means of detoxifying the H(2)O(2) produced by S. sanguinis. In this study, we investigated the association of three oxidative stress factors, Dpr, superoxide dismutase (SOD), and AhpCF, with the resistance of S. sanguinis to H(2)O(2). The knockout of dpr and sod significantly increased susceptibility to H(2)O(2), while the knockout of ahpCF had no apparent effect on susceptibility. In particular, dpr inactivation resulted in hypersensitivity to H(2)O(2). Next, we sought to identify the factor(s) involved in the regulation of these oxidative stress genes and found that PerR negatively regulated dpr expression. The knockout of perR caused increased dpr expression levels, resulting in low-level susceptibility to H(2)O(2) compared with the wild type. Furthermore, we evaluated the roles of perR, dpr, and sod when S. mutans was cocultured with S. sanguinis. Culturing of the dpr or sod mutant with S. sanguinis showed a significant decrease in the S. mutans population ratio compared with the wild type, while the perR mutant increased the ratio. Our results suggest that dpr and sod in S. mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H(2)O(2) in regulating the expression of Dpr.201323263955
3528170.9647Effect of Tulathromycin on Colonization Resistance, Antimicrobial Resistance, and Virulence of Human Gut Microbiota in Chemostats. To evaluate microbiological safety of tulathromycin on human intestinal bacteria, tulathromycin (0, 0.1, 1, 10, and 100 μg/mL) was added into Chemostats. Before and after drug exposure, we monitored (1) population, SCFA products, antimicrobial resistance, and colonization resistance of gut microbiota, and (2) the antimicrobial resistance genes, transferability, virulent genes, pathogenicity of Enterococus faecalis. Results showed that low level of tulathromycin did not exhibit microbiological hazard on resistance selection and colonization resistance. However, high level of tulathromycin (10 and 100 μg/mL) may disturb colonization resistance of human gut microbiota and select antimicrobial resistant E. faecalis. Most of the selected resistant E. faecalis carried resistant gene of ermB, transferable element of Tn1545 and three virulence genes (esp, cylA, and ace). One of them (E. faecalis 143) was confirmed to have higher horizontal transfer risk and higher pathogenicity. The calculated no observable adverse effect concentration (NOAEC) and microbiological acceptable daily intake (mADI) in our study was 1 μg/mL and 14.66 μg/kg.bw/day, respectively.201627092131
7791180.9647Investigation of reduction in risk from antibiotic resistance genes in laboratory wastewater by using O(3) , ultrasound, and autoclaving. Biological laboratory wastewater containing both antibiotic-resistant bacteria (ARB) and antibiotics is a potential source of antibiotic resistance genes (ARGs). Thus, we determined the efficacy of autoclaving, a common disinfection method, in eliminating 5 ARGs (sul1, sul2, tetW, tetM, amp) and the integrase-encoding gene intI1 from laboratory wastewater. Autoclaving (15 min, 121°C) inactivated all bacteria including ARB, whereas ARGs persisted in the wastewater with limited reduction even after 60 min of treatment. Ozonation (O(3) ), ultrasound (US), O(3) /US, and autoclaving followed by O(3) were investigated for their ability to reduce ARGs in laboratory wastewater. With O(3) and O(3) /US, the reduction rate ranged from 5.44 to 7.13 log for all ARGs investigated. Wastewater treatment with US alone did not reduce ARGs under the present experimental conditions (150 W, 53 kHz). Among the four treatments, autoclaving followed by O(3) treatment showed the highest reduction rates in the shortest time; however, further optimization and investigation are needed for the advanced treatment of bio-laboratory wastewater. Overall, this study provides novel insights into ARG sources and demonstrates that advanced oxidation methods can be useful to optimize laboratory wastewater treatment for ARG inactivation. PRACTITIONER POINTS: Bio-laboratory wastewater is potential reservoir of ARGs. Conventional autoclaving was not able to reduce ARGs to a low level. Autoclaving-O(3) completely eliminate all the bacteria. Autoclaving-O(3) reduced ARGs efficiently (6.12-7.86 logs removal in 60 min).202132891064
8737190.9647Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans. OBJECTIVE: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries. METHODS: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining. RESULTS: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system. CONCLUSION: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.202540162656