# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 426 | 0 | 0.9975 | Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Resistance to the bactericidal activity of serum appears to be an important virulence property of invasive bacteria. The conjugative multiple-antibiotic-resistance plasmid R6-5 was found to confer upon Escherichia coli host bacteria increased resistance against rabbit serum. Gene-cloning techniques were used to localize the serum resistance determinant of R6-5 to a segment of the plasmid that encodes conjugal transfer functions, and a pACYC184 hybrid plasmid, designated pKT107, that contains this segment was constructed. The generation and analysis of deletion and insertion mutant derivatives of the pKT107 plasmid that no longer specify serum resistance permitted precise localization of the serum-resistance cistron on the R6-5 map and demonstrated that this locus is coincident with that of traT, one of the two surface exclusion genes of R6-5. Examination of the proteins synthesized in E. coli minicells of pKT107 and its serum-sensitive mutant derivative plasmids confirmed that the serum-resistance gene product of R6-5 is the traT protein and showed that this protein is a major structural component (about 21,000 copies per cell) of the bacterial outer membrane. | 1980 | 6995306 |
| 431 | 1 | 0.9973 | Nucleotide sequence analysis of the complement resistance gene from plasmid R100. The multiple antibiotic resistance plasmid R100 renders Escherichia coli resistant to the bactericidal action of serum complement. We constructed a plasmid (pOW3) consisting of a 1,900-base-pair-long restriction fragment from R100 joined to a 2,900-base-pair-long fragment of pBR322 carrying ampicillin resistance. E. coli strains carrying pOW3 or R100 were up to 10,000-fold less sensitive to killing by serum complement than were plasmid-free bacteria or bacteria carrying pBR322. Nucleotide sequencing revealed that 875 of the 1,900 bases from R100 correspond exactly to part of the bacterial insertion sequence IS2. The remaining 1,075 bases contained only one sizeable open reading frame; it covered 729 base pairs (243 amino acids) and was preceded by nucleotide sequences characteristic of bacterial promoters and ribosome binding sites. The first 20 amino acids of the predicted protein showed features characteristic of a signal sequence. The remainder of the predicted protein showed an amino acid composition almost identical with that determined for the traT protein from the E. coli F factor. Southern blot analysis showed that the resistance gene from R100 does not hybridize to the serum resistance gene from ColV,I-K94 isolated by Binns et al.; we concluded that these genes are distinct. | 1982 | 6284713 |
| 424 | 2 | 0.9972 | Molecular analysis of bacterial cytolysins. Results of molecular and pathogenic studies of three different bacterial hemolysins (cytolysins) are presented. These exoproteins derive from the two gram-negative bacteria Escherichia coli and Aeromonas hydrophila and from the gram-positive pathogen Listeria monocytogenes. The hemolysin of E. coli is determined by an 8-kilobase (kb) region that includes four clustered genes (hlyC, hlyA, hlyB, and hlyD). This hemolysin determinant is part either of large transmissible plasmids or of the chromosome. The genes located chromosomally are found predominantly in E. coli strains that can cause pyelonephritis and/or other extraintestinal infections. A detailed analysis of the chromosomal hyl determinants of one nephropathogenic E. coli strain revealed the existence of specific, large chromosomal insertions 75 kb and 100 kb in size that carry the hly genes but that also influence the expression of other virulence properties, i.e., adhesion and serum resistance. The direct involvement of E. coli hemolysin in virulence could be demonstrated in several model systems. The genetic determinants for hemolysin (cytolysin) formation in A. hydrophila (aerolysin) and L. monocytogenes (listeriolysin) are less complex. Both cytolysins seem to be encoded by single genes, although two loci (aerB and aerC) that affect the expression and activity of aerolysin have been identified distal and proximal to the structural gene for aerolysin (aerA). Cytolysin-negative mutants of both bacteria were obtained by site-specific deletion and/or transposon mutagenesis. These mutants show a drastic reduction in the virulence of the respective bacteria. | 1987 | 2825323 |
| 447 | 3 | 0.9972 | The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Mi locus of tomato confers resistance to root knot nematodes. Tomato DNA spanning the locus was isolated as bacterial artificial chromosome clones, and 52 kb of contiguous DNA was sequenced. Three open reading frames were identified with similarity to cloned plant disease resistance genes. Two of them, Mi-1.1 and Mi-1.2, appear to be intact genes; the third is a pseudogene. A 4-kb mRNA hybridizing with these genes is present in tomato roots. Complementation studies using cloned copies of Mi-1.1 and Mi-1.2 indicated that Mi-1.2, but not Mi-1.1, is sufficient to confer resistance to a susceptible tomato line with the progeny of transformants segregating for resistance. The cloned gene most similar to Mi-1.2 is Prf, a tomato gene required for resistance to Pseudomonas syringae. Prf and Mi-1.2 share several structural motifs, including a nucleotide binding site and a leucine-rich repeat region, that are characteristic of a family of plant proteins, including several that are required for resistance against viruses, bacteria, fungi, and now, nematodes. | 1998 | 9707531 |
| 421 | 4 | 0.9972 | Effect of pap copy number and receptor specificity on virulence of fimbriated Escherichia coli in a murine urinary tract colonization model. Escherichia coli FN506 containing pap genes that encode two different P fimbriae adherence specificity types were tested for virulence in a murine urinary colonization model. Strains containing adherence genes on either high copy or low copy plasmids were compared. Bacteria that harbored the adherence genes on high copy plasmids colonized mouse kidneys less well than bacteria with the same adherence genes in low copy even though the high copy strains exhibited greater hemagglutination capacity. Bacteria with either type of P fimbriae were able to colonize but pap-2+ bacteria showed increased colonizing capacity when strains containing pap-1 or pap-2 genes on low copy plasmids were compared. Bacteria containing plasmids with both adherence specificities had a similar colonizing capacity as bacteria with either type separately. | 1994 | 7861959 |
| 8372 | 5 | 0.9971 | A Plasmid-Encoded Putative Glycosyltransferase Is Involved in Hop Tolerance and Beer Spoilage in Lactobacillus brevis. Lactobacillus brevis beer-spoiling strains harbor plasmids that contain genes such as horA, horC, and hitA which are known to confer hop tolerance. The L. brevis beer-spoiling strain UCCLBBS124, which possesses four plasmids, was treated with novobiocin, resulting in the isolation of UCCLBBS124 derivatives exhibiting hop sensitivity and an inability to grow in beer. One selected derivative was shown to have lost a single plasmid, here designated UCCLBBS124_D, which harbors the UCCLBBS124_pD0015 gene, predicted to encode a glycosyltransferase. Hop tolerance and growth in beer were restored when UCCLBBS124_pD0015 was introduced in one of these hop-sensitive derivatives on a plasmid. We hypothesize that this gene modifies the surface composition of the polysaccharide cell wall, conferring protection against hop compounds. Furthermore, the introduction of this gene in trans in L. brevis UCCLB521, a strain that cannot grow in and spoil beer, was shown to furnish the resulting strain with the ability to grow in beer, while its expression also conferred phage resistance. This study underscores how the acquisition of certain mobile genetic elements plays a role in hop tolerance and beer spoilage for strains of this bacterial species.IMPORTANCELactobacillus brevis is a member of the lactic acid bacteria and is often reported as the causative agent of food or beverage spoilage, in particular, that of beer. Bacterial spoilage of beer may result in product withdrawal or recall, with concomitant economic losses for the brewing industry. A very limited number of genes involved in beer spoilage have been identified and primarily include those involved in hop resistance, such as horA, hitA, and horC However, since none of these genes are universal, it is clear that there are likely (many) other molecular players involved in beer spoilage. Here, we report on the importance of a plasmid-encoded glycosyltransferase associated with beer spoilage by L. brevis that is involved in hop tolerance. The study highlights the complexity of the genetic requirements to facilitate beer spoilage and the role of multiple key players in this process. | 2020 | 31757821 |
| 436 | 6 | 0.9971 | The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Capsules from a range of pathogenic bacteria are key virulence determinants, and the capsule has been implicated in virulence in Pasteurella multocida. We have previously identified and determined the nucleotide sequence of the P. multocida M1404 (B:2) capsule biosynthetic locus (J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). The cap locus consists of 15 genes, which can be grouped into three functional regions. Regions 1 and 3 contain genes proposed to encode proteins involved in capsule export, and region 2 contains genes proposed to encode proteins involved in polysaccharide biosynthesis. In order to construct a mutant impaired in capsule export, the final gene of region 1, cexA, was disrupted by insertion of a tetracycline resistance cassette by allelic replacement. The genotype of the tet(M) OmegacexA mutant was confirmed by Southern hybridization and PCR. The acapsular phenotype was confirmed by immunofluorescence, and the strain could be complemented and returned to capsule production by the presence of a cloned uninterrupted copy of cexA. Wild-type, mutant, and complemented strains were tested for virulence by intraperitoneal challenge of mice; the presence of the capsule was shown to be a crucial virulence determinant. Following intraperitoneal challenge of mice, the acapsular bacteria were removed efficiently from the blood, spleen, and liver, while wild-type bacteria multiplied rapidly. Acapsular bacteria were readily taken up by murine peritoneal macrophages, but wild-type bacteria were significantly resistant to phagocytosis. Both wild-type and acapsular bacteria were resistant to complement in bovine and murine serum. | 2000 | 10816499 |
| 428 | 7 | 0.9970 | Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria. Copy numbers of pLS1 were 24, 4 and 4 molecules per genome in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli, respectively. Replication of the streptococcal plasmids in E. coli required functional polA and recA genes. A copy-number mutation corresponding to a 332 base-pair deletion of pLS1 doubled the plasmid copy number in all three species. Determination of the complete DNA sequence of pLS1 revealed transcriptional and translational signals and four open reading frames. A putative inhibitory RNA was encoded in the region deleted by the copy-control mutation. Two putative mRNA transcripts encoded proteins for replication functions and tetracycline resistance, respectively. The repB gene encoded a trans-acting, 23,000 Mr protein necessary for replication, and the tet gene encoded a very hydrophobic, 50,000 Mr protein required for tetracycline resistance. The polypeptides corresponding to these proteins were identified by specific labeling of plasmid-encoded products. The tet gene of pLS1 was highly homologous to tet genes in two other plasmids of Gram-positive origin but different in both sequence and mode of regulation from tet genes of Gram-negative origin. | 1986 | 2438417 |
| 244 | 8 | 0.9970 | Partial Diversity Generates Effector Immunity Specificity of the Bac41-Like Bacteriocins of Enterococcus faecalis Clinical Strains. Bacteriocin 41 (Bac41) is the plasmid-encoded bacteriocin produced by the opportunistic pathogen Enterococcus faecalis Its genetic determinant consists of bacL1 (effector), bacL2 (regulator), bacA (effector), and bacI (immunity). The secreted effectors BacL1 and BacA coordinate to induce the lytic cell death of E. faecalis Meanwhile, the immunity factor BacI provides self-resistance to the Bac41 producer, E. faecalis, against the action of BacL1 and BacA. In this study, we demonstrated that more than half of the 327 clinical strains of E. faecalis screened had functional Bac41 genes. Analysis of the genetic structure of the Bac41 genes in the DNA sequences of the E. faecalis strains revealed that the Bac41-like genes consist of a relatively conserved region and a variable region located downstream from bacA Based on similarities in the variable region, the Bac41-like genes could be classified into type I, type IIa, and type IIb. Interestingly, the distinct Bac41 types had specific immunity factors for self-resistance, BacI1 or BacI2, and did not show cross-immunity to the other type of effector. We also demonstrated experimentally that the specificity of the immunity was determined by the combination of the C-terminal region of BacA and the presence of the unique BacI1 or BacI2 factor. These observations suggested that Bac41-like bacteriocin genes are extensively disseminated among E. faecalis strains in the clinical environment and can be grouped into at least three types. It was also indicated that the partial diversity results in specificity of self-resistance which may offer these strains a competitive advantage. IMPORTANCE: Bacteriocins are antibacterial effectors produced by bacteria. In general, a bacteriocin-coding gene is accompanied by a cognate immunity gene that confers self-resistance on the bacteriocin-producing bacterium itself. We demonstrated that one of the bacteriocins, Bac41, is disseminated among E. faecalis clinical strains and the Bac41 subtypes with partial diversity. The Bac41-like bacteriocins were found to be classified into type I, type IIa, and type IIb by variation of the cognate immunity factors. The antibacterial activity of the respective effectors was specifically inhibited by the immunity factor from the same type of Bac41 but not the other types. This specificity of effector-immunity pairs suggests that bacteriocin genes might have evolved to change the immunity specificity to acquire an advantage in interbacterial competition. | 2016 | 27353651 |
| 1796 | 9 | 0.9970 | Plasmids of Shigella flexneri serotype 1c strain Y394 provide advantages to bacteria in the host. BACKGROUND: Shigella flexneri has an extremely complex genome with a significant number of virulence traits acquired by mobile genetic elements including bacteriophages and plasmids. S. flexneri serotype 1c is an emerging etiological agent of bacillary dysentery in developing countries. In this study, the complete nucleotide sequence of two plasmids of S. flexneri serotype 1c strain Y394 was determined and analysed. RESULTS: The plasmid pINV-Y394 is an invasive or virulence plasmid of size 221,293 bp composed of a large number of insertion sequences (IS), virulence genes, regulatory and maintenance genes. Three hundred and twenty-eight open reading frames (ORFs) were identified in pINV-Y394, of which about a half (159 ORFs) were identified as IS elements. Ninety-seven ORFs were related to characterized genes (majority of which are associated with virulence and their regulons), and 72 ORFs were uncharacterized or hypothetical genes. The second plasmid pNV-Y394 is of size 10,866 bp and encodes genes conferring resistance against multiple antibiotics of clinical importance. The multidrug resistance gene cassette consists of tetracycline resistance gene tetA, streptomycin resistance gene strA-strB and sulfonamide-resistant dihydropteroate synthase gene sul2. CONCLUSIONS: These two plasmids together play a key role in the fitness of Y394 in the host environment. The findings from this study indicate that the pathogenic S. flexneri is a highly niche adaptive pathogen which is able to co-evolve with its host and respond to the selection pressure in its environment. | 2019 | 31035948 |
| 5153 | 10 | 0.9970 | Single-Molecule Sequencing (PacBio) of the Staphylococcus capitis NRCS-A Clone Reveals the Basis of Multidrug Resistance and Adaptation to the Neonatal Intensive Care Unit Environment. The multi-resistant Staphylococcus capitis clone NRCS-A has recently been described as a major pathogen causing nosocomial, late-onset sepsis (LOS) in preterm neonates worldwide. NRCS-A representatives exhibit an atypical antibiotic resistance profile. Here, the complete closed genome (chromosomal and plasmid sequences) of NRCS-A prototype strain CR01 and the draft genomes of three other clinical NRCS-A strains from Australia, Belgium and the United Kingdom are annotated and compared to available non-NRCS-A S. capitis genomes. Our goal was to delineate the uniqueness of the NRCS-A clone with respect to antibiotic resistance, virulence factors and mobile genetic elements. We identified 6 antimicrobial resistance genes, all carried by mobile genetic elements. Previously described virulence genes present in the NRCS-A genomes are shared with the six non-NRCS-A S. capitis genomes. Overall, 63 genes are specific to the NRCS-A lineage, including 28 genes located in the methicillin-resistance cassette SCCmec. Among the 35 remaining genes, 25 are of unknown function, and 9 correspond to an additional type I restriction modification system (n = 3), a cytosine methylation operon (n = 2), and a cluster of genes related to the biosynthesis of teichoic acids (n = 4). Interestingly, a tenth gene corresponds to a resistance determinant for nisin (nsr gene), a bacteriocin secreted by potential NRCS-A strain niche competitors in the gut microbiota. The genomic characteristics presented here emphasize the contribution of mobile genetic elements to the emergence of multidrug resistance in the S. capitis NRCS-A clone. No NRCS-A-specific known virulence determinant was detected, which does not support a role for virulence as a driving force of NRCS-A emergence in NICUs worldwide. However, the presence of a nisin resistance determinant on the NRCS-A chromosome, but not in other S. capitis strains and most coagulase-negative representatives, might confer a competitive advantage to NRCS-A strains during the early steps of gut colonization in neonates. This suggests that the striking adaptation of NRCS-A to the NICU environment might be related to its specific antimicrobial resistance and also to a possible enhanced ability to challenge competing bacteria in its ecological niche. | 2016 | 28018320 |
| 243 | 11 | 0.9970 | Phylogenetic distribution of translational GTPases in bacteria. BACKGROUND: Translational GTPases are a family of proteins in which GTPase activity is stimulated by the large ribosomal subunit. Conserved sequence features allow members of this family to be identified. RESULTS: To achieve accurate protein identification and grouping we have developed a method combining searches with Hidden Markov Model profiles and tree based grouping. We found all the genes for translational GTPases in 191 fully sequenced bacterial genomes. The protein sequences were grouped into nine subfamilies. Analysis of the results shows that three translational GTPases, the translation factors EF-Tu, EF-G and IF2, are present in all organisms examined. In addition, several copies of the genes encoding EF-Tu and EF-G are present in some genomes. In the case of multiple genes for EF-Tu, the gene copies are nearly identical; in the case of multiple EF-G genes, the gene copies have been considerably diverged. The fourth translational GTPase, LepA, the function of which is currently unknown, is also nearly universally conserved in bacteria, being absent from only one organism out of the 191 analyzed. The translation regulator, TypA, is also present in most of the organisms examined, being absent only from bacteria with small genomes.Surprisingly, some of the well studied translational GTPases are present only in a very small number of bacteria. The translation termination factor RF3 is absent from many groups of bacteria with both small and large genomes. The specialized translation factor for selenocysteine incorporation--SelB--was found in only 39 organisms. Similarly, the tetracycline resistance proteins (Tet) are present only in a small number of species. Proteins of the CysN/NodQ subfamily have acquired functions in sulfur metabolism and production of signaling molecules. The genes coding for CysN/NodQ proteins were found in 74 genomes. This protein subfamily is not confined to Proteobacteria, as suggested previously but present also in many other groups of bacteria. CONCLUSION: Four of the translational GTPase subfamilies (IF2, EF-Tu, EF-G and LepA) are represented by at least one member in each bacterium studied, with one exception in LepA. This defines the set of translational GTPases essential for basic cell functions. | 2007 | 17214893 |
| 6317 | 12 | 0.9970 | O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of bloodstream and other extraintestinal infections in human and animals. The greatest challenge encountered by ExPEC during an infection is posed by the host defense mechanisms, including lysozyme. ExPEC have developed diverse strategies to overcome this challenge. The aim of this study was to characterize the molecular mechanism of ExPEC resistance to lysozyme. For this, 15,000 transposon mutants of a lysozyme-resistant ExPEC strain NMEC38 were screened; 20 genes were identified as involved in ExPEC resistance to lysozyme-of which five were located in the gene cluster between galF and gnd, and were further confirmed to be involved in O-specific polysaccharide biosynthesis. The O-specific polysaccharide was able to inhibit the hydrolytic activity of lysozyme; it was also required by the complete lipopolysaccharide (LPS)-mediated protection of ExPEC against the bactericidal activity of lysozyme. The O-specific polysaccharide was further shown to be able to directly interact with lysozyme. Furthermore, LPS from ExPEC strains of different O serotypes was also able to inhibit the hydrolytic activity of lysozyme. Because of their cell surface localization and wide distribution in Gram-negative bacteria, O-specific polysaccharides appear to play a long-overlooked role in protecting bacteria against exogenous lysozyme. | 2018 | 29405825 |
| 6136 | 13 | 0.9970 | Complete genome sequences of Lacticaseibacillus paracasei INIA P272 (CECT 8315) and Lacticaseibacillus rhamnosus INIA P344 (CECT 8316) isolated from breast-fed infants reveal probiotic determinants. Lacticaseibacillus paracasei INIA P272 and Lacticaseibacillus rhamnosus INIA P344, isolated from breast-fed infants, are two promising bacterial strains for their use in functional foods according to their demonstrated probiotic and technological characteristics. To better understand their probiotic characteristics and evaluate their safety, here we report the draft genome sequences of both strains as well as the analysis of their genetical content. The draft genomes of L. paracasei INIA P272 and L. rhamnosus INIA P344 comprise 3.01 and 3.26 Mb, a total of 2994 and 3166 genes and a GC content of 46.27 % and 46.56 %, respectively. Genomic safety was assessed following the EFSA guidelines: the identification of both strains was confirmed through Average Nucleotide Identity, and the absence of virulence, pathogenic and antibiotic resistance genes was demonstrated. The genome stability analysis revealed the presence of plasmids and phage regions in both genomes, however, CRISPR sequences and other mechanisms to fight against phage infections were encoded. The probiotic abilities of both strains were supported by the presence of genes for the synthesis of SCFA, genes involved in resistance to acid and bile salts or a thiamine production cluster. Moreover, the encoded exopolysaccharide biosynthesis genes could provide additional protection against the deleterious gastrointestinal conditions, besides which, playing a key role in adherence and coaggregation of pathogenic bacteria together with the high number of adhesion proteins and domains encoded by both genomes. Additionally, the bacteriocin cluster genes found in both strains, could provide an advantageous ability to compete against pathogenic bacteria. This genomic study supports the probiotic characteristics described previously for these two strains and satisfies the safety requirements to be used in food products. | 2022 | 35868412 |
| 425 | 14 | 0.9970 | A novel ColV plasmid encoding type IV pili. Many septicaemic Escherichia coli strains harbour ColV virulence plasmids. This paper describes pO78V, a conjugative ColV plasmid from an avian pathogenic E. coli strain that encodes type IV pili in addition to other virulence-related genes and tetracycline resistance. Plasmid location of type IV pili genes was demonstrated using Southern hybridization and expression of the pili was demonstrated using RT-PCR and phage sensitivity assays. This is a first report of a ColV plasmid encoding type IV pili. Plasmid pO78V is a mosaic plasmid containing replicons and other genes typical to both IncI1 and IncFII groups. As type IV pili of Gram-negative bacteria are involved in several stages of infection, their presence on a ColV virulence plasmid could expand the repertoire of pathogenesis-related genes. | 2003 | 12576591 |
| 6213 | 15 | 0.9970 | Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Phagocytosis resistance is an important virulence factor in Klebsiella pneumoniae. Dictyostelium has been used to study the interaction between phagocytes and bacteria because of its similarity to mammalian macrophages. In this study, we used a Dictyostelium model to investigate genes for resistance to phagocytosis in NTUH-K2044, a strain of K. pneumoniae causing pyogenic liver abscess that is highly resistant to phagocytosis. A total of 2,500 transposon mutants were screened by plaque assay, and 29 of them permitted phagocytosis by Dictyostelium. In the 29 mutants, six loci were identified; three were capsular synthesis genes. Of the other three, one was related to carnitine metabolism, one encoded a subunit of protease (clpX), and one encoded a lipopolysaccharide O-antigen transporter (wzm). Deletion and complementation of these genes showed that only ΔclpX and Δwzm mutants became susceptible to Dictyostelium phagocytosis, and their complementation restored the phagocytosis resistance phenotype. These two mutants were also susceptible to phagocytosis by human neutrophils and revealed attenuated virulence in a mouse model, implying that they play important roles in the pathogenesis of K. pneumoniae. Furthermore, we demonstrated that clpP, which exists in an operon with clpX, was also involved in resistance to phagocytosis. The transcriptional profile of ΔclpX was examined by microarray analysis and revealed a 3-fold lower level of expression of capsular synthesis genes. Therefore, we have identified genes involved in resistance to phagocytosis in K. pneumoniae using Dictyostelium, and this model is useful to explore genes associated with resistance to phagocytosis in heavily encapsulated bacteria. | 2011 | 21173313 |
| 454 | 16 | 0.9969 | Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Two large tetracycline resistance (TcR) plasmids have been completely sequenced, the pTet plasmid (45.2 kb) from Campylobacter jejuni strain 81-176 and a plasmid pCC31 (44.7 kb) from Campylobacter coli strain CC31 that was isolated from a human case of severe gastroenteritis in the UK. Both plasmids are mosaic in structure, having homologues of genes found in a variety of different commensal and pathogenic bacteria, but nevertheless, showed striking similarities in DNA sequence and overall gene organization. Several predicted proteins encoded by genes involved in conjugation showed highest homology to proteins found in Actinobacillus actinomycetemcomitans, a periodontal pathogen. In addition to replication- and conjugation-associated genes, both plasmids carried a tet(O) gene encoding tetracycline resistance, a 6 kb ORF encoding a putative methylase and a number of genes of unknown function. The pTet plasmid co-exists in C. jejuni strain 81-176 with a smaller, previously characterized, non-conjugative plasmid pVir that also encodes a type IV secretion system (T4SS) that may affect virulence. In contrast, the T4SS encoded by pTet and pCC31 are shown to mediate bacterial conjugation between Campylobacter. The possible origin and evolution of pCC31 and pTet is discussed. | 2004 | 15470128 |
| 496 | 17 | 0.9969 | Cloning of genes that have environmental and clinical importance from rhodococci and related bacteria. Generalised and specialised transduction systems were developed for Rhodococcus by means of bacteriophage Q4. The latter was used in conjunction with DNA from an unstable genetic element of R. rhodochrous to construct resistance plasmids which replicate in strains of R. equi, R. erythropolis and R. rhodochrous. One of the plasmids, pDA21, was joined with Erythropolis coli suicide vector pEcoR251 to obtain shuttle plasmids maintained in both rhodococci and E. coli. Conjugation between these rhodococcal strains demonstrated all were interfertile with each other and that some of the determinants for this were located on the unstable genetic element. Plasmids derived from this element, such as pDA21, carried the conjugative and self-incompatibility capacities; deletion analysis revealed that DNA necessary for self-incompatibility overlapped with that for arsenic resistance. Rifampicin is one of the principal chemotherapeutic agents used to treat infections by rhodococci and related organisms. The genes responsible for two types of inactivation have been cloned. The sequence of the R. equi DNA responsible for decomposition of the antibiotic strongly resembled those of monooxygenases acting upon phenolic compounds, consistent with the presence of a naphthalenyl moiety in the rifampicin molecule. Antibiotic resistance conferred by the gene was surprisingly specific to the semisynthetic compounds rifampicin (150-fold increase) and rifapentine (70-fold). Similar specificity was observed with the other inactivation gene cloned, which ribosylates rifampicin at the 23-hydroxyl position. A 60-bp sequence upstream of the monooxygenase and ribosylation genes is strikingly similar suggesting a shared pattern of regulation. Rhodococcal arsenic resistance and azo dye degradation genes have been cloned and characterised. | 1998 | 10068797 |
| 453 | 18 | 0.9969 | Visualization of pathogenicity regions in bacteria. We show here how pathogenicity islands can be analysed using GenomeAtlases, which is a method for visualising repeats, DNA structural characteristics, and base composition of chromosomes and plasmids. We have applied this method to the E. coli plasmid pO157, and the Y. pestis plasmid pPCP1. In both cases pathogenic genes were shown to differ in A + T content and structural properties. Furthermore, examination of an antibiotic resistance gene cluster from S. typhimurium showed that the same was true for genes encoding antibiotic resistance. | 2000 | 11145420 |
| 448 | 19 | 0.9969 | Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. A total DNA clone bank of a strain of Xanthomonas campestris pv. malvacearum (Xcm) was constructed in the cosmid vector pSa747 and transfected into Escherichia coli. The Xcm strain carries at least nine identifiable avirulence (A) genes. Clones in E. coli were mated individually into a recombination-proficient Xcm isolate carrying no known A genes. Screening was for incompatibility on congenic cotton host lines that differ by single specific resistance (R) genes. Ten different cosmid clones conferring race-specific avirulence were recovered. In most cases, the same A gene clone was recovered independently several times. Using the congenic host lines and the merodiploid transconjugant pathogen strains, five of the A genes were shown to specifically interact, gene-for-gene, with individual R genes in the congenic cotton lines. Some A/R gene interactions appeared qualitatively different from others, suggesting that the physiological mechanism(s) of gene-for-gene specified incompatibility may be unique to the interactive gene pair. All A genes appeared to be chromosomally determined, three were found linked on a single 32-kilobase clone, and the rest were spaced more than 31 kilobases apart. Colinearity of the cosmid inserts with the Xcm recipient (carrying no known A genes) chromosome was demonstrated in two of the three tested. This and other evidence suggests that at least some A genes in bacteria may have the equivalent of virulence (a) alleles. The genetics of race specificity in this phytopathogenic bacterium appeared in all respects to be identical to that found in phytopathogenic fungi. | 1986 | 16593751 |