# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5213 | 0 | 0.9754 | Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation. | 2025 | 41170963 |
| 6026 | 1 | 0.9694 | Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products. | 2025 | 39900880 |
| 5381 | 2 | 0.9693 | Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG). | 2024 | 38078696 |
| 5210 | 3 | 0.9693 | Whole genome sequence data of Lactiplantibacillus plantarum IMI 507027. Here we report the draft genome sequence of the Lactiplantibacillus plantarum IMI 507027 strain. The genome consists of 37 contigs with a total size of 3,235,614 bp and a GC% of 44.51. After sequence trimming, 31 contigs were annotated, revealing 3,126 genes, of which 3,030 were coding sequences. The Average Nucleotide Identity (ANI) gave a value of 99.9926% between IMI 507027 and L. plantarum JDM1, identifying the strain as L. plantarum. No genes of concern for safety-related traits such as antimicrobial resistance or virulence factors were found. The annotated genome and raw sequence reads were deposited at NCBI under Bioproject with the accession number PRJNA791753. | 2022 | 35310818 |
| 8460 | 4 | 0.9691 | Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida. Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon's gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon's defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b. | 2024 | 39458292 |
| 6088 | 5 | 0.9690 | Complete Genome of Achromobacter xylosoxidans, a Nitrogen-Fixing Bacteria from the Rhizosphere of Cowpea (Vigna unguiculata [L.] Walp) Tolerant to Cucumber Mosaic Virus Infection. Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security. | 2024 | 39278894 |
| 5216 | 6 | 0.9689 | Unraveling the draft genome and phylogenomic analysis of a multidrug-resistant Planococcus sp. NCCP-2050(T): a promising novel bacteria from Pakistan. Planococcus is a genus of Gram-positive bacteria known for potential industrial and agricultural applications. Here, we report the first draft genome sequence and phylogenomic analysis of a CRISPR-carrying, multidrug-resistant, novel candidate Planococcus sp. NCCP-2050(T) isolated from agricultural soil in Pakistan. The strain NCCP-2050(T) exhibited significant resistance to various classes of antibiotics, including fluoroquinolones (i.e., ciprofloxacin, levofloxacin, ofloxacin, moxifloxacin, and bacitracin), cephalosporins (cefotaxime, ceftazidime, cefoperazone), rifamycins (rifampicin), macrolides (erythromycin), and glycopeptides (vancomycin). Planococcus sp. NCCP-2050(T) consists of genome size of 3,463,905 bp, comprised of 3639 annotated genes, including 82 carbohydrate-active enzyme genes and 39 secondary metabolite genes. The genome also contained 80 antibiotic resistance, 162 virulence, and 305 pathogen-host interaction genes along with two CRISPR arrays. Based on phylogenomic analysis, digital DNA-DNA hybridization, and average nucleotide identity values (i.e., 35.4 and 88.5%, respectively) it was suggested that strain NCCP-2050(T) might represent a potential new species within the genus Planococcus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03748-z. | 2023 | 37663752 |
| 6090 | 7 | 0.9688 | Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2T, a novel salt-resistant species isolated from the desert of northwestern China. Mesorhizobium alhagi strain CCNWXJ12-2(T) is a novel species of soil-dwelling, nitrogen-fixing bacteria that can form symbiotic root nodules with Alhagi sparsifolia. Moreover, the strain has high resistance to salt and alkali. Here we report the draft genome sequence of Mesorhizobium alhagi strain CCNWXJ12-2(T). A large number of osmotic regulation-related genes have been identified. | 2012 | 22328758 |
| 6081 | 8 | 0.9687 | In vitro probiotic characteristics and whole-genome sequence analysis of lactic acid bacteria isolated from monkey faeces. This study aimed to isolate lactic acid bacteria from monkey faeces and evaluate their safety and probiotic properties through a combination of in vitro assays and complete genomic sequencing. The results revealed that two Limosilactobacillus reuteri strains (LDHa and LSHe) exhibited promising probiotic attributes: no hemolytic activity, remarkable antibacterial activity against intestinal pathogens, high bile salt tolerance (77.46% survival rate for LDHa at 0.3% bile salt concentration), excellent gastrointestinal resistance (survival rate > 40%), and favorable surface characteristics (63.92-66.00% auto-aggregation; 91.33-93.80% hydrophobicity). The whole genome sequencing results revealed that strain LDHa has a total length of 2,031,794 bp with a GC content of 39.02% and contains (Strompfová et al. 2014) coding genes. The LSHe strain has a total length of 2,031,507 bp with a GC content of 39.02% and contains 1954 coding genes. Genomic analysis revealed that both strains possess four CRISPR sequences and one secondary metabolic gene cluster, with functional annotations from the EGGNOG, KEGG, and CAZy databases demonstrating genome stability; the absence of horizontally transferable antibiotic resistance genes; the enrichment of metabolic pathway-related genes, and probiotic-associated functional potential including antimicrobial, anti-inflammatory, immunomodulatory, and antitumor activities. This study demonstrated that L. reuteri LDHa and LSHe exhibit favorable safety profiles and probiotic potential at both physiological and genomic levels, positioning them as promising candidates for probiotic formulations in captive primate populations. | 2025 | 40852645 |
| 6139 | 9 | 0.9687 | Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications. | 2023 | 38616876 |
| 6137 | 10 | 0.9686 | Genomic and phenotypic analyses of Carnobacterium jeotgali strain MS3(T), a lactate-producing candidate biopreservative bacterium isolated from salt-fermented shrimp. Carnobacterium jeotgali strain MS3(T) was isolated from traditionally fermented Korean shrimp produced with bay salt. The bacterium belongs to the family Carnobacteriaceae, produces lactic acid and contains gene clusters involved in the production of lactate, butyrate, aromatic compounds and exopolysaccharides. Carnobacterium jeotgali strain MS3(T) was characterized through extensive comparison of the virulence potential, genomic relatedness and sequence similarities of its genome with the genomes of other Carnobacteria and lactic acid bacteria. In addition, links between predicted functions of genes and phenotypic characteristics, such as antibiotic resistance and lactate and butyrate production, were extensively evaluated. Genomic and phenotypic analyses of strain MS3(T) revealed promising features, including minimal virulence genes and lactate production, which make this bacterium a desirable candidate for exploitation by the fermented food industry. | 2015 | 25868912 |
| 2434 | 11 | 0.9685 | Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli Isolated from a Fermented Sorghum-Millet Beverage. Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda. Thereafter, the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The presumptive E. coli was incubated in brain heart infusion broth (pH = 3.6) at 25°C for 48 h. The most acid-stable strains were clustered using (GTG)(5) rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins (Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus. The Stx 2 gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria could be used to improve the safety of fermented foods. | 2019 | 31933646 |
| 5233 | 12 | 0.9685 | Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria. | 2021 | 34401102 |
| 8475 | 13 | 0.9683 | Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence. | 2022 | 35722285 |
| 5184 | 14 | 0.9683 | In silico evaluation of genomic characteristics of Streptococcus infantarius subsp. infantarius for application in fermentations. This study aims to evaluate the in silico genomic characteristics of Streptococcus infantarius subsp. infantarius, isolated from Coalho cheese from Paraíba, Brazil, with a view to application in lactic fermentations. rRNA sequences from the 16S ribosomal region were used as input to GenBank, in the search for patterns that could reveal a non-pathogenic behavior of S. infantarius subsp. infantarius, comparing mobile genetic elements, antibiotic resistance genes, pan-genome analysis and multi-genome alignment among related species. S. infantarius subsp. infantarius CJ18 was the only complete genome reported by BLAST/NCBI with high similarity and after comparative genetics with complete genomes of Streptococcus agalactiae (SAG153, NJ1606) and Streptococcus thermophilus (ST106, CS18, IDCC2201, APC151) revealed that CJ18 showed a low number of transposases and integrases, infection by phage bacteria of the Streptococcus genus, absence of antibiotic resistance genes and presence of bacteriocin, folate and riboflavin producing genes. The genome alignment revealed that the collinear blocks of S. thermophilus ST106 and S. agalactiae SAG153 have inverted blocks when compared to the CJ18 genome due to gene positioning, insertions and deletions. Therefore, the strains of S. infantarius subsp. infantarius isolated from Coalho cheese from Paraíba showed genomic similarity with CJ18 and the mobility of genes analyzed in silico showed absence of pathogenicity throughout the genome of CJ18, indicating the potential of these strains for the dairy industry. | 2022 | 36417612 |
| 6129 | 15 | 0.9679 | Yersinia ruckeri Infection and Enteric Redmouth Disease among Endangered Chinese Sturgeons, China, 2022. During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease. | 2024 | 38781928 |
| 6049 | 16 | 0.9679 | Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. The properties of probiotics such as lactic acid bacteria (LAB) have been widely studied over the last decades. In the present study, four different LAB species, namely Lactobacillus gasseri ATCC 33323, Lacticaseibacillus rhamnosus GG ATCC 53103, Levilactobacillus brevis ATCC 8287, and Lactiplantibacillus plantarum ATCC 14917, were investigated in order to determine their ability to survive in the human gut. They were evaluated based on their tolerance to acids, resistance to simulated gastrointestinal conditions, antibiotic resistance, and the identification of genes encoding bacteriocin production. All four tested strains demonstrated high resistance to simulated gastric juice after 3 h, and the viable counts revealed declines in cell concentrations of less than 1 log cycle. L. plantarum showed the highest level of survival in the human gut, with counts of 7.09 log CFU/mL. For the species L. rhamnosus and L. brevis, the values were 6.97 and 6.52, respectively. L. gasseri, after 12 h, showed a 3.96 log cycle drop in viable counts. None of the evaluated strains inhibited resistance to ampicillin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, or chloramphenicol. With regard to bacteriocin genes, the Pediocin PA gene was identified in Lactiplantibacillus plantarum ATCC 14917, Lacticaseibacillus rhamnosus GG ATCC 53103, and Lactobacillus gasseri ATCC 33323. The PlnEF gene was detected in Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus rhamnosus GG ATCC 53103. The Brevicin 174A and PlnA genes were not detected in any bacteria. Moreover, the potential antioxidant activity of LAB's metabolites was evaluated. At the same time, the possible antioxidant activity of metabolites of LAB was first tested using the free radical DDPH(•) (a, a-Diphenyl-β-Picrylhydrazyl) and then evaluated with regard to their radical scavenging activity and inhibition against peroxyl radical induced DNA scission. All strains showed antioxidant activity; however, the best antioxidant activity was achieved by L. brevis (94.47%) and L. gasseri (91.29%) at 210 min. This study provides a comprehensive approach to the action of these LAB and their use in the food industry. | 2023 | 37317238 |
| 6136 | 17 | 0.9679 | Complete genome sequences of Lacticaseibacillus paracasei INIA P272 (CECT 8315) and Lacticaseibacillus rhamnosus INIA P344 (CECT 8316) isolated from breast-fed infants reveal probiotic determinants. Lacticaseibacillus paracasei INIA P272 and Lacticaseibacillus rhamnosus INIA P344, isolated from breast-fed infants, are two promising bacterial strains for their use in functional foods according to their demonstrated probiotic and technological characteristics. To better understand their probiotic characteristics and evaluate their safety, here we report the draft genome sequences of both strains as well as the analysis of their genetical content. The draft genomes of L. paracasei INIA P272 and L. rhamnosus INIA P344 comprise 3.01 and 3.26 Mb, a total of 2994 and 3166 genes and a GC content of 46.27 % and 46.56 %, respectively. Genomic safety was assessed following the EFSA guidelines: the identification of both strains was confirmed through Average Nucleotide Identity, and the absence of virulence, pathogenic and antibiotic resistance genes was demonstrated. The genome stability analysis revealed the presence of plasmids and phage regions in both genomes, however, CRISPR sequences and other mechanisms to fight against phage infections were encoded. The probiotic abilities of both strains were supported by the presence of genes for the synthesis of SCFA, genes involved in resistance to acid and bile salts or a thiamine production cluster. Moreover, the encoded exopolysaccharide biosynthesis genes could provide additional protection against the deleterious gastrointestinal conditions, besides which, playing a key role in adherence and coaggregation of pathogenic bacteria together with the high number of adhesion proteins and domains encoded by both genomes. Additionally, the bacteriocin cluster genes found in both strains, could provide an advantageous ability to compete against pathogenic bacteria. This genomic study supports the probiotic characteristics described previously for these two strains and satisfies the safety requirements to be used in food products. | 2022 | 35868412 |
| 6076 | 18 | 0.9679 | Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application. | 2022 | 35365862 |
| 6027 | 19 | 0.9678 | Comprehensive Genomic Profiling and In Vitro Probiotic and Safety Assessments of Enterococcus faecium UFAS147 Isolated from Moroccan Goat Feces. Enterococci are beneficial commensal bacteria recognized for their probiotic effects and are commonly utilized as adjunct cultures in dairy product fermentation. However, their ability to acquire antibiotic resistance and contribute to infections raises significant safety concerns. In this study, both in vitro assays and genome sequencing were conducted to evaluate the safety, functionality, and probiotic potential of Enterococcus faecium UFAS147, isolated from Moroccan goat feces. The strain tolerated acidic conditions (96.79% survival at pH 1.5) and bile salt (1-4%), with notable autoaggregation (33.66%), coaggregation with Salmonella typhymurium ATCC14028 (72.78%), and Staphylococcus aureus B1 (65.55%). Safety assays confirmed the absence of hemolytic activity, mucin degradation, and biogenic amine production. Antibiotic susceptibility testing showed sensitivity to six antibiotics. PCR analysis further confirmed the absence of vanA and vanB genes associated with vancomycin resistance. Genome analysis revealed a length of 2,606,111 bp with a GC content of 38.11% and the absence of genes linked to acquired antimicrobial resistance, cytolysins, and biogenic amine production. Genes supporting probiotic traits, such as Enterocin A, Enterocin P, and Enterolysin A, acid and bile resistance, adhesion, and colonization were identified. These findings highlight E. faecium UFAS147 as a promising candidate for probiotic applications. | 2025 | 40608139 |