# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7946 | 0 | 0.9091 | New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater. | 2021 | 33546268 |
| 523 | 1 | 0.9035 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 3106 | 2 | 0.9012 | Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments. The oceans are increasingly polluted with plastic debris, and several studies have implicated plastic as a reservoir for antibiotic resistance genes and a potential vector for antibiotic-resistant bacteria. Bioplastic is widely regarded as an environmentally friendly replacement to conventional petroleum-based plastic, but the effects of bioplastic pollution on marine environments remain largely unknown. Here, we present the first evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments. Biofilms fouling ceramic, polyethylene terephthalate (PET), and polyhydroxyalkanoate (PHA) were investigated by shotgun metagenomic sequencing. Four ARG groups were more abundant in PHA: trimethoprim resistance (TMP), multidrug resistance (MDR), macrolide-lincosamide-streptogramin resistance (MLS), and polymyxin resistance (PMR). One MRG group was more abundant in PHA: multimetal resistance (MMR). The relative abundance of ARGs and MRGs were strongly correlated based on a Mantel test between the Bray-Curtis dissimilarity matrices (R = 0.97, p < 0.05) and a Pearson's analysis (R = 0.96, p < 0.05). ARGs were detected in more than 40% of the 57 metagenome-assembled genomes (MAGs) while MRGs were detected in more than 90% of the MAGs. Further investigation (e.g., culturing, genome sequencing, antibiotic susceptibility testing) revealed that PHA biofilms were colonized by hemolytic Bacillus cereus group bacteria that were resistant to beta-lactams, vancomycin, and bacitracin. Taken together, our findings indicate that bioplastic, like conventional petroleum-based plastic, is a reservoir for resistance genes and a potential vector for antibiotic-resistant bacteria in coastal marine sediments. | 2021 | 34537596 |
| 7887 | 3 | 0.9009 | Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission. | 2024 | 39122125 |
| 8119 | 4 | 0.9007 | Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes. Improper disposal of antibiotic fermentation dregs poses a risk of releasing antibiotics and antibiotic resistant bacteria to the environment. Therefore, this study evaluated the effects of biochar addition to lincomycin fermentation dregs (LFDs) composting. Biochar increased compost temperature and enhanced organic matter decomposition and residual antibiotics removal. Moreover, a 1.5- to 17.0-fold reduction in antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) was observed. Adding biochar also reduced the abundances of persistent ARGs hosts (e.g., Streptomyces, Pseudomonas) and ARG-related metabolic pathways and genes (e.g., ATP-binding cassette type-2 transport, signal transduction and multidrug efflux pump genes). By contrast, compost decomposition improved due to enhanced metabolism of carbohydrates and amino acids. Overall, adding biochar into LFDs compost reduced the proliferation of ARGs and enhanced microbial community metabolism. These results demonstrate that adding biochar to LFDs compost is a simple and efficient way to decrease risks associated with LFDs composting. | 2023 | 36334868 |
| 8105 | 5 | 0.9006 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 8126 | 6 | 0.9003 | Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective. Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments. | 2025 | 40570627 |
| 7876 | 7 | 0.9001 | Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS. | 2023 | 36871701 |
| 7888 | 8 | 0.8999 | Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function. | 2024 | 38710419 |
| 8054 | 9 | 0.8998 | Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs. | 2019 | 31505392 |
| 7829 | 10 | 0.8998 | Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit. | 2022 | 35063836 |
| 7895 | 11 | 0.8995 | Efficient anaerobic biodegradation of trimethoprim driven by electrogenic respiration: Optimizing bioelectro-characterization, elucidating biodegradation mechanism and fate of antibiotic resistance genes systematically. In this study, a bioelectrochemical system, with trimethoprim (TMP) as the sole carbon source, was constructed to evaluate the bioelectrogenic respiration on the acceleration of TMP degradation. The bioelectro-characterization was comprehensively optimized. The results showed that the optimal removal efficiency of TMP was achieved (99.38 %) when the external resistance, pH, and concentration of phosphate buffer solution were 1000 Ω, 7, and 25 mM, respectively. The potential TMP degradation pathways were speculated based on Liquid Chromatography-Mass Spectrometry and density functional theory calculations, including demethylation, demethoxy, hydroxylation and methylene bridge cracking. The overall biotoxicity of TMP biodegradation products after electrogenic respiration treatment was generally reduced. Electroactive bacteria (3.85 %) and potential degraders (27.18 %) were markedly increased in bioelectrogenic anaerobic treatment system, where bioelectrogenic respiration played a crucial role in promoting TMP biodegradation. However, it was observed that under long-term toxic stress of TMP, there was an enrichment of antibiotic resistance genes (ARGs) among the TMP-degrading bacteria. Furthermore, the comprehensive interaction between microbial communities and environmental variables was extensively investigated, revealing that electroactive bacteria and potential degraders were strongly positively correlated with TMP removal and biomineralization efficiency. This study provides guidance and promising strategy for the effective treatment of antibiotic-containing wastewater in practical applications. | 2025 | 40168928 |
| 7917 | 12 | 0.8993 | Mechanisms of metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic chloramphenicol wastewater treatment. Anaerobic wastewater treatment is a promising technology for refractory pollutant treatment. The nano zero-valent iron (nZVI) assisted anaerobic system could enhance contaminant removal. In this work, we added nZVI into an anaerobic system to investigate the effects on system performances and metabolic mechanism for chloramphenicol (CAP) wastewater treatment. As nZVI concentrations increased from 0 to 1 g/L, the CAP removal efficiency was appreciably improved from 46.5% to 99.2%, while the CH(4) production enhanced more than 20 times. The enhanced CAP removal resulted from the enrichments of dechlorination-related bacteria (Hyphomicrobium) and other functional bacteria (e.g., Zoogloea, Syntrophorhabdus) associated with refractory contaminants degradation. The improved CH(4) production was ascribed to the increases in fermentative-related bacteria (Smithella and Acetobacteroides), homoacetogen (Treponema), and methanogens. The increased abundances of anaerobic functional genes further verified the mechanism of CH(4) production. Furthermore, the abundances of potential hosts of antibiotic resistance genes (ARGs) were reduced under high nZVI concentration (1 g/L), contributing to ARGs attenuation. This study provides a comprehensive analysis of the mechanism in metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic CAP wastewater treatment. | 2021 | 34323729 |
| 8129 | 13 | 0.8993 | Pesticide contamination and antimicrobial resistance: Two threats to the Neotropical Otter (Lontra longicaudis) in the Peñas Blancas River Basin, Costa Rica. The effects of synthetic pesticides on antibiotic-resistance genes (ARGs) in bacterial communities from contaminated waters are unclear. Otters in the Peñas Blancas basin encounter various anthropogenic residues, including pesticides. In 2022, we analyzed the presence of pesticides in six water samples and ARGs in eight otter fecal samples. Thirteen pesticides (herbicides, insecticides, fungicides, and multi-target) and seven ARGs (qnrS, tetA, tetB, tetQ, tetW, sulI, sulII) were detected. Regulated pesticides such as chlorpyrifos and ethoprophos, along with diazinon, diuron, imidacloprid, and terbutryn were found. These pesticides have been implicated in promoting antimicrobial resistance (AMR) in bacteria, particularly when combined with sub-lethal doses of antibiotics. Elevated levels of ethoprophos (0.67 ng/L) and a fecal sample containing four ARGs (tetA, tetB, sulI, and sulII) came from the upper basin. Our findings reveal pesticide application practices in the region, and highlight the potential risk of pesticide exposure to wildlife, including development of AMR. | 2025 | 40473152 |
| 7940 | 14 | 0.8993 | Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms. | 2021 | 33387747 |
| 8109 | 15 | 0.8991 | The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating. | 2022 | 35063626 |
| 7898 | 16 | 0.8991 | Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. | 2019 | 31442759 |
| 7948 | 17 | 0.8990 | Ciprofloxacin increased abundance of antibiotic resistance genes and shaped microbial community in epiphytic biofilm on Vallisneria spiralis in mesocosmic wetland. This study investigated the fate of ciprofloxacin (CIP) in wetlands dominated by Vallisneria spiralis. About 99% of CIP was degraded from overlaying water within 4 days of treatment but significantly inhibited the nutrient removal capacity (TN, TP, and COD) by causing a drastic reduction in microbial aggregation in epiphytic biofilm and bacterial biodiversity. CIP triggered resistance mechanisms among dominant bacteria phyla such as Proteobacteria, Actinobacteria, and Planctomycetes causing their increased relative abundance. Additionally, the relative abundances of eukaryotic microorganisms (including; Chloroplastida, Metazoa, and Rhizaria) and 13 ARGs subtypes (including; Efflux pump, Tetracycline, Multi-drug, Rifampin, Beta-lactam, Peptide, Trimethoprim) were significantly increased. While dominant metabolic pathways such as Carbohydrate, amino acid, energy and nucleotide metabolism were inhibited. This study revealed that V. spiralis has great sorption capacity for CIP than sediment and though CIP was effectively removed from the overlying water, it caused a prolonged effect on the epiphytic biofilm microbial communities. | 2021 | 33412499 |
| 7942 | 18 | 0.8989 | Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations. | 2022 | 35944782 |
| 7881 | 19 | 0.8989 | Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level. | 2019 | 30640017 |