# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 623 | 0 | 0.9898 | The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors. | 2020 | 31964794 |
| 9037 | 1 | 0.9892 | Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BACKGROUND: Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. RESULTS: To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. CONCLUSION: Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium. | 2009 | 19761586 |
| 8797 | 2 | 0.9891 | Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Bacteroides fragilis constitutes 1-2% of the natural microbiota of the human digestive tract and is the predominant anaerobic opportunistic pathogen in gastrointestinal infections. Most bacteria use quorum sensing (QS) to monitor cell density in relation to other cells and their environment. In Gram-negative bacteria, the LuxRI system is common. The luxR gene encodes a transcriptional activator inducible by type I acyl-homoserine lactone autoinducers (e.g., N-[3-oxohexanoyl] homoserine lactone and hexanoyl homoserine lactone [C6-HSL]). This study investigated the presence of QS system(s) in B. fragilis. The genome of American-type culture collection strain no. ATCC25285 was searched for QS genes. The strain was grown to late exponential phase in the presence or absence of synthetic C6-HSL and C8-HSL or natural homoserine lactones from cell-free supernatants from spent growth cultures of other bacteria. Growth, susceptibility to antimicrobial agents, efflux pump gene (bmeB) expression, and biofilm formation were measured. Nine luxR and no luxI orthologues were found. C6-HSL and supernatants from Yersinia enterocolitica, Vibrio cholerae, and Pseudomonas aeruginosa caused a significant (1) reduction in cellular density and (2) increases in expression of four putative luxR genes, bmeB3, bmeB6, bmeB7, and bmeB10, resistance to various antibiotics, which was reduced by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP, an uncoupler that dissipates the transmembrane proton gradient, which is also the driving force of resistance nodulation division efflux pumps) and (3) increase in biofilm formation. Susceptibility of ATCC25285 to C6-HSL was also reduced by CCCP. These data suggest that (1) B. fragilis contains putative luxR orthologues, which could respond to exogenous homoserine lactones and modulate biofilm formation, bmeB efflux pump expression, and susceptibility to antibiotics, and (2) BmeB efflux pumps could transport homoserine lactones. | 2008 | 18188535 |
| 8799 | 3 | 0.9891 | The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716. | 2022 | 36008485 |
| 6006 | 4 | 0.9889 | Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502. | 2023 | 33685902 |
| 9038 | 5 | 0.9889 | Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. The high tolerance of biofilm-grown Burkholderia cepacia complex bacteria against antimicrobial agents presents considerable problems for the treatment of infected cystic fibrosis patients and the implementation of infection control guidelines. In the present study, we analyzed the tolerance of planktonic and sessile Burkholderia cenocepacia J2315 cultures and examined the transcriptional response of sessile cells to treatment with chlorhexidine. At low (0.0005%) and high (0.05%) concentrations, chlorhexidine had a similar effect on both populations, but at intermediate concentrations (0.015%) the antimicrobial activity was more pronounced in planktonic cultures. The exposure of sessile cells to chlorhexidine resulted in an upregulation of the transcription of 469 (6.56%) and the downregulation of 257 (3.59%) protein-coding genes. A major group of upregulated genes in the treated biofilms encoded membrane-related and regulatory proteins. In addition, several genes coding for drug resistance determinants also were upregulated. The phenotypic analysis of RND (resistance-nodulation-division) efflux pump mutants suggests the presence of lifestyle-specific chlorhexidine tolerance mechanisms; efflux system RND-4 (BCAL2820-BCAL2822) was more responsible for chlorhexidine tolerance in planktonic cells, while other systems (RND-3 [BCAL1672-BCAL1676] and RND-9 [BCAM1945-BCAM1947]) were linked to resistance in sessile cells. After sessile cell exposure, multiple genes encoding chemotaxis and motility-related proteins were upregulated in concert with the downregulation of an adhesin-encoding gene (BCAM2143), suggesting that sessile cells tried to escape the biofilm. We also observed the differential expression of 19 genes carrying putative small RNA molecules, indicating a novel role for these regulatory elements in chlorhexidine tolerance. | 2011 | 21357299 |
| 751 | 6 | 0.9888 | Global transcriptomics and targeted metabolite analysis reveal the involvement of the AcrAB efflux pump in physiological functions by exporting signaling molecules in Photorhabdus laumondii. In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. Photorhabdus laumondii is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in P. laumondii TT01. Here, we explore the pleiotropic effects of AcrAB in this bacterium. RNA sequencing of ∆acrA compared to wild type revealed growth-phase-specific gene regulation, with stationary-phase cultures showing significant downregulation of genes involved in stilbene, fatty acid, and anthraquinone pigment biosynthesis, as well as genes related to cellular clumping and fimbrial pilin formation. Genes encoding putative LuxR regulators, type VI secretion systems, two-partner secretion systems, and contact-dependent growth inhibition systems were upregulated in ∆acrA. Additionally, exponential-phase cultures revealed reduced expression of genes related to motility in ∆acrA. The observed transcriptional changes were consistent with phenotypic assays, demonstrating that the ∆acrA mutant had altered bioluminescence and defective orange pigmentation due to disrupted anthraquinone production. These findings confirm the role of stilbenes as signaling molecules involved in gene expression, thereby shaping these phenotypes. Furthermore, we showed that AcrAB contributes to swarming and swimming motilities independently of stilbenes. Collectively, these results highlight that disrupting acrAB causes transcriptional and metabolic dysregulation in P. laumondii, likely by impeding the export of key signaling molecules such as stilbenes, which may serve as a ligand for global transcriptional regulators.IMPORTANCERecent discoveries have highlighted Photorhabdus laumondii as a promising source of novel anti-infective compounds, including non-ribosomal peptides and polyketides. One key player in the self-resistance of this bacterium to stilbene derivatives is the AcrAB-TolC complex, which is also a well-known contributor to multidrug resistance. Here, we demonstrate the pleiotropic effects of the AcrAB efflux pump in P. laumondii TT01, impacting secondary metabolite biosynthesis, motility, and bioluminescence. These effects are evident at transcriptional, metabolic, and phenotypic levels and are likely mediated by the efflux of signaling molecules such as stilbenes. These findings shed light on the multifaceted roles of efflux pumps and open avenues to better explore the complexity of resistance-nodulation-division (RND) pump-mediated signaling pathways in bacteria, thereby aiding in combating multidrug-resistant infections. | 2025 | 40920493 |
| 781 | 7 | 0.9887 | Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown. | 2003 | 12917802 |
| 9046 | 8 | 0.9887 | Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells. | 2016 | 27702426 |
| 9039 | 9 | 0.9887 | Resistance of the Burkholderia cepacia complex to fosmidomycin and fosmidomycin derivatives. The Burkholderia cepacia complex (BCC) is a group of 17 closely related opportunistic pathogens that are able to infect the respiratory tract of cystic fibrosis patients. BCC bacteria are intrinsically resistant to many antibiotics and are therefore difficult to eradicate. Fosmidomycin could be a new therapeutic agent to treat BCC infections as it inhibits 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in the non-mevalonate pathway essential in BCC bacteria for isoprenoid synthesis. In this study, the antimicrobial activity of fosmidomycin and eight fosmidomycin derivatives towards 40 BCC strains was investigated. All BCC strains were resistant to fosmidomycin, although addition of glucose-6-phosphate reduced the minimum inhibitory concentration values of FR900098, the fosmidomycin acetyl derivative, from 512 mg/L to 64 mg/L for Burkholderia multivorans and B. cepacia. This enhanced activity was linked to increased expression of the genes involved in glycerol-3-phosphate transport, which appears to be the only route for fosmidomycin import in BCC bacteria. Furthermore, upregulation of a fosmidomycin resistance gene (fsr) encoding an efflux pump was observed during fosmidomycin and FR900098 treatment. These results strongly suggest that the observed resistance in BCC bacteria is due to insufficient uptake accompanied by fosmidomycin and FR900098 efflux. | 2011 | 21724375 |
| 770 | 10 | 0.9886 | Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests. | 2024 | 38519499 |
| 9035 | 11 | 0.9886 | Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to PA1877 (PA1874-1877) genes, in an P. aeruginosa PA14 background results in an increase in sensitivity to tobramycin, gentamicin, and ciprofloxacin, specifically when this mutant strain is growing in a biofilm. This efflux pump is more highly expressed in biofilm cells than in planktonic cells, providing an explanation for why these genes are important for biofilm but not planktonic resistance to antibiotics. Furthermore, expression of these genes in planktonic cells increases their resistance to antibiotics. We have previously shown that ndvB is important for biofilm-specific resistance (T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart, and G. A. O'Toole, Nature 426:306-310, 2003). Our discovery that combining the ndvB mutation with the PA1874-1877 gene deletion results in a mutant strain that is more sensitive to antibiotics than either single mutant strain suggests that ndvB and PA1874-1877 contribute to two different mechanisms of biofilm-specific resistance to antibiotics. | 2008 | 18469108 |
| 9041 | 12 | 0.9886 | Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. BACKGROUND: Burkholderia cenocepacia is a member of the Burkholderia cepacia complex group of bacteria that cause infections in individuals with cystic fibrosis. B. cenocepacia isolate J2315 has been genome sequenced and is representative of a virulent, epidemic CF strain (ET12). Its genome encodes multiple antimicrobial resistance pathways and it is not known which of these is important for intrinsic or spontaneous resistance. To map these pathways, transcriptomic analysis was performed on: (i) strain J2315 exposed to sub-inhibitory concentrations of antibiotics and the antibiotic potentiator chlorpromazine, and (ii) on spontaneous mutants derived from J2315 and with increased resistance to the antibiotics amikacin, meropenem and trimethoprim-sulfamethoxazole. Two pan-resistant ET12 outbreak isolates recovered two decades after J2315 were also compared to identify naturally evolved gene expression changes. RESULTS: Spontaneous resistance in B. cenocepacia involved more gene expression changes and different subsets of genes than those provoked by exposure to sub inhibitory concentrations of each antibiotic. The phenotype and altered gene expression in the resistant mutants was also stable irrespective of the presence of the priming antibiotic. Both known and novel genes involved in efflux, antibiotic degradation/modification, membrane function, regulation and unknown functions were mapped. A novel role for the phenylacetic acid (PA) degradation pathway genes was identified in relation to spontaneous resistance to meropenem and glucose was found to repress their expression. Subsequently, 20 mM glucose was found to produce greater that 2-fold reductions in the MIC of multiple antibiotics against B. cenocepacia J2315. Mutation of an RND multidrug efflux pump locus (BCAM0925-27) and squalene-hopene cyclase gene (BCAS0167), both upregulated after chlorpromazine exposure, confirmed their role in resistance. The recently isolated outbreak isolates had altered the expression of multiple genes which mirrored changes seen in the antibiotic resistant mutants, corroborating the strategy used to model resistance. Mutation of an ABC transporter gene (BCAS0081) upregulated in both outbreak strains, confirmed its role in B. cenocepacia resistance. CONCLUSIONS: Global mapping of the genetic pathways which mediate antibiotic resistance in B. cenocepacia has revealed that they are multifactorial, identified potential therapeutic targets and also demonstrated that putative catabolite repression of genes by glucose can improve antibiotic efficacy. | 2011 | 21781329 |
| 805 | 13 | 0.9885 | LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di-N-Oxide Phenazine in Lysobacter antibioticus. Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers. | 2023 | 37166326 |
| 8434 | 14 | 0.9885 | A potent and selective antimicrobial poly(amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. The pandemic of multidrug-resistant Gram negative bacteria (GNB) is a worldwide healthcare concern, and very few antibiotics are being explored to match the clinical challenge. Recently, amino-terminated poly(amidoamine) (PAMAM) dendrimers have shown potential to function as broad antimicrobial agents. However, PAMAM displays a generation dependent cytotoxicity to mammalian cells and low selectivity on bacterial cells, which limits PAMAM to be developed as an antibacterial agent for systemic administration. We conjugated G3 PAMAM with LED209, a specific inhibitor of quorum sensor QseC of GNB, to generate a multifunctional agent PAMAM-LED209. Intriguingly, PAMAM-LED209 showed higher selectivity on GNB and lower cytotoxicity to mammalian cells, yet remained strong antibacterial activity. PAMAM-LED209 also inhibited virulence gene expression of GNB, and did not induce antibiotic-resistance. The present work firstly demonstrated that PAMAM-LED209 conjugate had a highly selective anti-GNB activity and low cytotoxicity, which offered a feasible strategy for combating multidrug-resistant GNB infections. FROM THE CLINICAL EDITOR: This research team demonstrated that a novel PAMAM-LED209 conjugate had highly selective activity against Gram-negative bacteria, coupled with low cytotoxicity, offering a potential strategy for combating multidrug-resistant infections. | 2015 | 25461286 |
| 6173 | 15 | 0.9885 | Mutation in crrB encoding a sensor kinase increases expression of the RND-type multidrug efflux pump KexD in Klebsiella pneumoniae. BACKGROUND: RND-type multidrug efflux systems in Gram-negative bacteria protect them against antimicrobial agents. Gram-negative bacteria generally possess several genes which encode such efflux pumps, but these pumps sometimes fail to show expression. Generally, some multidrug efflux pumps are silent or expressed only at low levels. However, genome mutations often increase the expression of such genes, conferring the bacteria with multidrug-resistant phenotypes. We previously reported mutants with increased expression of the multidrug efflux pump KexD. We aimed to identify the cause of KexD overexpression in our isolates. Furthermore, we also examined the colistin resistant levels in our mutants. METHODS: A transposon (Tn) was inserted into the genome of Klebsiella pneumoniae Em16-1, a KexD-overexpressing mutant, to identify the gene(s) responsible for KexD overexpression. RESULTS: Thirty-two strains with decreased kexD expression after Tn insertion were isolated. In 12 of these 32 strains, Tn was identified in crrB, which encodes a sensor kinase of a two-component regulatory system. DNA sequencing of crrB in Em16-1 showed that the 452nd cytosine on crrB was replaced by thymine, and this mutation changed the 151st proline into leucine. The same mutation was found in all other KexD-overexpressing mutants. The expression of crrA increased in the mutant overexpressing kexD, and the strains in which crrA was complemented by a plasmid showed elevated expression of kexD and crrB from the genome. The complementation of the mutant-type crrB also increased the expression of kexD and crrA from the genome, but the complementation of the wild-type crrB did not. Deletion of crrB decreased antibiotic resistance levels and KexD expression. CrrB was reported as a factor of colistin resistance, and the colistin resistance of our strains was tested. However, our mutants and strains carrying kexD on a plasmid did not show increased colistin resistance. CONCLUSION: Mutation in crrB is important for KexD overexpression. Increased CrrA may also be associated with KexD overexpression. | 2023 | 37331490 |
| 9019 | 16 | 0.9884 | Deleting qseC downregulates virulence and promotes cross-protection in Pasteurella multocida. QseC, a histidine sensor kinase of the QseBC two-component system, acts as a global regulator of bacterial stress resistance, biofilm formation, and virulence. The function of QseC in some bacteria is well understood, but not in Pasteurella multocida. We found that deleting qseC in P. multocida serotype A:L3 significantly down-regulated bacterial virulence. The mutant had significantly reduced capsule production but increased resistance to oxidative stress and osmotic pressure. Deleting qseC led to a significant increase in qseB expression. Transcriptome sequencing analysis showed that 1245 genes were regulated by qseC, primarily those genes involved in capsule and LPS biosynthesis and export, biofilm formation, and iron uptake/utilization, as well as several immuno-protection related genes including ompA, ptfA, plpB, vacJ, and sodA. In addition to presenting strong immune protection against P. multocida serotypes A:L1 and A:L3 infection, live ΔqseC also exhibited protection against P. multocida serotype B:L2 and serotype F:L3 infection in a mouse model. The results indicate that QseC regulates capsular production and virulence in P. multocida. Furthermore, the qseC mutant can be used as an attenuated vaccine against P. multocida strains of multiple serotypes. | 2021 | 34801081 |
| 6175 | 17 | 0.9884 | Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. | 2016 | 27210311 |
| 9040 | 18 | 0.9884 | Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BACKGROUND: Bacteria from the Burkholderia cepacia complex (Bcc) are the only group of cystic fibrosis (CF) respiratory pathogens that may cause death by an invasive infection known as cepacia syndrome. Their large genome (> 7000 genes) and multiple pathways encoding the same putative functions make virulence factor identification difficult in these bacteria. METHODS: A novel microarray was designed to the genome of Burkholderia cenocepacia J2315 and transcriptomics used to identify genes that were differentially regulated when the pathogen was grown in a CF sputum-based infection model. Sputum samples from CF individuals infected with the same B. cenocepacia strain as genome isolate were used, hence, other than a dilution into a minimal growth medium (used as the control condition), no further treatment of the sputum was carried out. RESULTS: A total of 723 coding sequences were significantly altered, with 287 upregulated and 436 downregulated; the microarray-observed expression was validated by quantitative PCR on five selected genes. B. cenocepacia genes with putative functions in antimicrobial resistance, iron uptake, protection against reactive oxygen and nitrogen species, secretion and motility were among the most altered in sputum. Novel upregulated genes included: a transmembrane ferric reductase (BCAL0270) implicated in iron metabolism, a novel protease (BCAL0849) that may play a role in host tissue destruction, an organic hydroperoxide resistance gene (BCAM2753), an oxidoreductase (BCAL1107) and a nitrite/sulfite reductase (BCAM1676) that may play roles in resistance to the host defenses. The assumptions of growth under iron-depletion and oxidative stress formulated from the microarray data were tested and confirmed by independent growth of B. cenocepacia under each respective environmental condition. CONCLUSION: Overall, our first full transcriptomic analysis of B. cenocepacia demonstrated the pathogen alters expression of over 10% of the 7176 genes within its genome when it grows in CF sputum. Novel genetic pathways involved in responses to antimicrobial resistance, oxidative stress, and iron metabolism were revealed by the microarray analysis. Virulence factors such as the cable pilus and Cenocepacia Pathogenicity Island were unaltered in expression. However, B. cenocepacia sustained or increased expression of motility-associated genes in sputum, maintaining a potentially invasive phenotype associated with cepacia syndrome. | 2008 | 18801206 |
| 633 | 19 | 0.9882 | The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of phoQ caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.2-fold reduced cytotoxicity to human lung epithelial cells, substantially reduced lettuce leaf virulence, and a major, 10 000-fold reduction in competitiveness in chronic rat lung infections. Microarray analysis revealed that PhoQ controlled the expression of many genes consistent with these phenotypes and with its known role in polymyxin B resistance. It was also demonstrated that PhoQ controls the expression of many genes outside the known PhoP regulon. | 2009 | 19246741 |