CENTRES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
210500.9893Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. BACKGROUND: Drug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB) from environmental sources. The clinical implication of such environmental GNBs is unknown. OBJECTIVES: We conducted a systematic review to determine how often such saprophytic GNBs cause human infections. METHODS: We queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms "infections," "human infections," "hospital infection." We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI), urinary tract infection (UTI), skin and soft tissue infection (SSTI), post-surgical infection (PSI), osteomyelitis (Osteo), and pneumonia (PNA) were quantitatively assessed. RESULTS: Thirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans, and Pseudomonas putida. Of these infections, 443 (66%) had BSI, 48 (7%) had SSTI, 36 (5%) had UTI, 28 (4%) had PSI, 21 (3%) had PNA, 16 (3%) had Osteo, and 82 (12%) had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL), carbapenemase, and metallo-β-lactamase genes recognized in human pathogens. CONCLUSION: These observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa.201729164118
140710.9893World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800
140620.9892Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. BACKGROUND: Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. OBJECTIVE: The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. METHODS: Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. RESULTS: There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla (VIM). Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). CONCLUSION: Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria.202133824857
148130.9891Molecular versus conventional assay for diagnosis of hospital-acquired pneumonia in critically ill patients: a single center experience. PURPOSE: Lower respiratory tract infections are reported as one of top five causes of mortality and morbidity in the world. A bacterial etiology is often involved in HAP, most frequently from multidrug resistant gram-negative bacteria, and fast accurate diagnosis of etiologic agent(s) of LRTI is essential for an appropriate management. The aim of this retrospective study was to evaluate the analytical performance of Biofire Filmarray Pneumonia Plus for bacteria detection in bronchoalveolar lavage samples and the concordance of bacterial loads between BFPP and cultural gold standard methods. METHODS: A total of 111 BAL samples were obtained from 111 consecutive patients admitted to Intensive Care Unit of "Renato Dulbecco" Teaching Hospital of Catanzaro, from March 2023 to March 2024. RESULTS: Compared to conventional methods, BFPP showed a sensitivity of 99 % and a specificity of 64 %. The agreement between the two methods was assessed by calculating PPA and NPA, being 89 % and 95 %, respectively. The most common bacterial species identified at BFPP was Klebsiella pneumoniae, followed by Acinetobacter calcaceuticus-baumanii complex, Staphylococcus aureus and Pseudomonas aeruginosa. Bacterial load (CFU/ml) in relation to copy number detected by molecular analysis showed the best performance for value ≥10(6) copie/mL. About molecular mechanisms of resistance in comparison to phenotypic profiles, the highest level of performance was observed for presence of KPC genes, all isolates showing resistance to carbapenems, followed by OXA-48 like and NDM. CONCLUSION: The high concordance reported in this study between the identification of resistance genes and phenotypic indication can lead to an appropriate, fast and tailored antibiotic therapy.202540513663
219640.9889Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens.202540585877
210850.9887Prevalence and Molecular Characterization of Carbapenemase-Producing Multidrug-Resistant Bacteria in Diabetic Foot Ulcer Infections. Background: Diabetic foot ulcers (DFUs) represent severe complications in diabetic patients, often leading to chronic infections and potentially resulting in nontraumatic lower-limb amputations. The increasing incidence of multidrug-resistant (MDR) bacteria in DFUs complicates treatment strategies and worsens patient prognosis. Among these pathogens, carbapenemase-producing pathogens have emerged as particularly concerning owing to their resistance to β-lactam antibiotics, including carbapenems. Methods: This study evaluated the prevalence of MDR bacteria, specifically carbapenemase-producing pathogens, in DFU infections. A total of 200 clinical isolates from DFU patients were analyzed via phenotypic assays, including the modified Hodge test (MHT) and the Carba NP test, alongside molecular techniques to detect carbapenemase-encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48). Results: Among the isolates, 51.7% were confirmed to be carbapenemase producers. The key identified pathogens included Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The most commonly detected carbapenemase genes were blaKPC (27.6%) and blaNDM (24.1%). Carbapenemase-producing isolates presented high resistance to β-lactam antibiotics, whereas non-carbapenemase-producing isolates presented resistance through mechanisms such as porin loss and efflux pumps. Conclusions: The findings of this study highlight the significant burden of MDR infections, particularly carbapenemase-producing organisms, in DFUs. MDR infections were strongly associated with critical clinical parameters, including pyrexia (p = 0.017), recent antibiotic use (p = 0.003), and the severity of infections. Notably, the need for minor amputations was much higher in MDR cases (p < 0.001), as was the need for major amputations (p < 0.001). MDR infections were also strongly associated with polymicrobial infections (p < 0.001). Furthermore, Wagner ulcer grade ≥II was more common in MDR cases (p = 0.002). These results emphasize the urgent need for enhanced microbiological surveillance and the development of tailored antimicrobial strategies to combat MDR pathogens effectively. Given the high prevalence of carbapenem resistance, there is an immediate need to explore novel therapeutic options to improve clinical outcomes for diabetic patients with DFUs.202539857026
142460.9886Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.202337289837
142670.9886Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. OBJECTIVES: To identify the carbapenemase producing Gram-negative bacteria (GNB) by phenotypic methods and to confirm the presence of resistant genes using real-time polymerase chain reaction (PCR). METHODS: This was a prospective study carried out at the Department of Microbiology, Sri Venkata Sai Medical College and Hospital, Mahabubnagar, India, from March 2018-2021. All samples were screened for carbapenem resistance by disc diffusion method and the VITEK(®)2 compact system (bioMérieux, France). Detection of carbapenemase was carried out using RAPIDEC(®)CARBA NP test (Biomeriux Private Limited, South Delhi, India), screening for metallo-β-lactamases (MBL) was carried out by double disk synergy test (DDST), and genotypic characterization by real-time PCR. RESULTS: Among the 1093 Gram-negative bacilli identified, 220 (17.0%) were resistant to carbapenems by both tested methods. Carbapenemase detection using the RAPIDEC(®)CARBA NP test indicated that 207 (94.0%) were carbapenemase producers, of which 189 (91.2%) were MBL producers. The most common carbapenemase genes identified were New Delhi metallo-β-lactamase (NDM; 47.3%), followed by the co-existence of genes in combination of NDM, with Verona integron-mediated metallo-β-lactamase (VIM; 39.6%), VIM and oxacillin hydrolyzing enzymes-48 (OXA-48; 4.3%), and OXA-48 (1.4%).No gene of active on imipenem, Klebsiella pneumonia carbapenemase, VIM, or OXA-48 alone was detected. CONCLUSION: This study suggests routine carbapenem resistance testing among multi-drug resistant-GNBs, as most of these infections occur in hospitals. In addition, there is a possibility that these highly antibiotic-resistant genes could spread to other bacteria resulting in further dissemination.202235256490
143380.9885Carbapenem resistance in gram-negative pathogens in an Iranian hospital: high prevalence of OXA-type carbapenemase genes. BACKGROUND: The widespread dissemination of carbapenem- resistant gram-negative bacteria poses a significant threat to global public health. PURPOSE: This study aimed to investigate the prevalence of carbapenem resistance in gram-negative bacteria isolated from patients at the Children's Medical Center Hospital, Tehran, Iran, to understand the molecular mechanisms underlying this resistance. METHODS: During the period spanning from June 2019 to June 2020, 777 gram-negative bacterial strains were isolated. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standards Institute. Polymerase chain reaction was used to detect carbapenem resistance genes including bla OXA23, bla OXA24, bla OXA48, bla OXA51, bla OXA58, bla OXA143, bla KPC, bla IMP, bla VIM, and bla NDM. RESULTS: Among the total bacterial isolates, 141 (18.1%) exhibited carbapenem resistance. Escherichia coli was the most prevalent (57.4%), followed by Klebsiella pneumoniae (11.3%), and Acinetobacter baumannii (10.6%). Other notable contributors included Enterobacter spp. (5.7%), Salmonella spp. (3.5%), and Stenotrophomonas maltophilia (2.8%). Citrobacter spp., Proteus mirabilis, and Pseudomonas aeruginosa contributed to the distributions of 2, 1, and 3 isolates, respectively. Notably, bla OXA48 showed the highest prevalence (33%), followed by bla OXA143 and bla OXA5 8 (27% and 24%, respectively). In addition, bla OXA24 was present in 11% of the total isolates, bla OXA23 in 10%, and bla NDM in 10%, whereas bla KPC, bla VIM, and bla IMP were not detected. CONCLUSION: Our study highlights the prevalence of carbapenemase- producing gram-negative isolates among pediatric patients. Notable resistance patterns, especially in K. pneumoniae and E. coli, underline the urgent need for proactive interventions, including appropriate antibiotic prescription practices and strengthening of antibiotic stewardship programs.202539483044
142390.9884Distribution and molecular characterization of carbapenemase-producing gram-negative bacteria in Henan, China. This study aimed to investigate the epidemiological characteristics and trends over time of carbapenemase-producing (e.g., KPC, NDM, VIM, IMP, and OXA-48) Gram-negative bacteria (CPGNB). Non-duplicated multi-drug resistant Gram-negative bacteria (MDRGNB) were collected from the First Affiliated Hospital of Zhengzhou University from April 2019 to February 2023. Species identification of each isolate was performed using the Vitek2 system and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry according to the manufacturer's instructions. PCR detected carbapenem resistance genes in the strains, strains carrying carbapenem resistance genes were categorized as CPGNB strains after validation by carbapenem inactivation assay. A total of 5705 non-repetitive MDRGNB isolates belonging to 78 different species were collected during the study period, of which 1918 CPGNB were validated, with the respiratory tract being the primary source of specimens. Epidemiologic statistics showed a significant predominance of ICU-sourced strains compared to other departments. Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were the significant CPGNB in Henan, and KPC and NDM were the predominant carbapenemases. Carbapenem-resistant infections in Henan Province showed an overall increasing trend, and the carriage of carbapenemase genes by CPGNB has become increasingly prevalent and complicated. The growing prevalence of CPGNB in the post-pandemic era poses a significant challenge to public safety.202438909136
1434100.9884Molecular characterization of carbapenemases production among environmental Gram-negative isolates at Addis Ababa, Ethiopia: first detection of NDM Producers in hospital environments. INTRODUCTION: The Gram-Negative bacteria, particularly carbapenem-resistant strains (CR-GNB), pose a global health threat due to high morbidity and mortality. Detecting carbapenemase-encoding genes is essential for understanding their spread in hospital environments. This study investigated environmental colonization by CR-GNB in Ethiopian hospitals, including genetic characterization of resistance genes. METHODOLOGY: A cross-sectional study analyzed 103 environmental GNB isolates collected from inanimate surfaces at Tikur Anbessa Specialized Hospital (TASH) and ALERT Hospital (June-September 2021). Conventional microbiological methods identified the isolates, and antimicrobial susceptibility was tested using the Kirby-Bauer disk diffusion method. Carbapenemase production was screened using the Modified Hodge test (MHT) and combined disk test (CDT). Resistance genes (blaKPC, blaNDM, blaOXA-48) were detected via PCR in isolates with reduced meropenem susceptibility. RESULTS: The predominant GNB were Acinetobacter baumannii (47%), Pseudomonas aeruginosa (33%), and E. coli (12%). Among 103 isolates, 62% showed reduced meropenem susceptibility. The most common CR-GNB was Acinetobacter baumannii (37.5%), followed by E. coli (18.8%) and Klebsiella pneumoniae (12.5%). Carbapenemase production was detected in 41.7% of isolates via PCR, with blaNDM being the most common (43 isolates). Linens (26.4%) and beds (21.4%) had the highest contamination rates. Most carbapenemase-producing isolates were multidrug-resistant (MDR). CONCLUSIONS: The presence of blaNDM and blaKPC genes highlights hospital surfaces as reservoirs for resistance genes, contributing to healthcare-associated infections. Routine surveillance and early detection of carbapenemase producers are crucial for infection control and antimicrobial resistance management.202540305531
2120110.9883Antimicrobial Resistance Patterns of Gram-negative Bacteria in an Iranian Referral Pediatric Hospital: A Present Danger of New Delhi Metallo-β- lactamase. BACKGROUND: Antimicrobial resistance among gram-negative bacteria has been growing, particularly in developing countries, like Iran. The emergence and spread of carbapenem-resistance mechanisms is a major public health concern because no definite treatments have yet been established for this problem. This study aimed to evaluate antibiotic susceptibility of gram-negative bacteria, metallo-β-lactamases (MBLs) and carbapenemase-producing genes, including bla (NDM), bla (VIM), and bla (IMP) in patients referred to Children's Medical Center, Tehran, Iran. MATERIAL AND METHODS: In this cross-sectional study, a total of 944 gram-negative isolates were tested in the study, and antimicrobial susceptibility testing was performed. Moreover, MBL production of carbapenem-resistant isolates, as well as the presence of bla (NDM), bla (VIM), and bla (IMP), was investigated. RESULTS: The most common gram-negative isolated bacteria were Escherichia coli (489 samples, 52%), followed by Klebsiella pneumoniae (167 samples, 18%), Pseudomonas aeruginosa (101 samples, 11%), Enterobacter spp. (64 samples, 7%), Pseudomonas spp. (35 samples, 4%), Acinetobacter baumannii (18 samples, 2%), and Burkholderia cepacia (17 samples, 2%). Imipenemresistant was found in 75%, 61%, and 60% of Stenotrophomonas maltophilia, Enterobacter spp., and A. baumannii isolates, respectively. Moreover, the highest resistance to meropenem was observed in S. maltophilia, A. baumannii, P. aeruginosa, and B. cepacia (100%, 96%, 83%, and 61.5%, respectively). Double disk synergy test (DDST) results showed that 112 out of 255 carbapenem- resistant isolates (44%) were MBL-producing ones. The presence of the bla (NDM) gene was identified in 32 (29%) of MBL-producing isolates, 13 of which were K. pneumoniae, 7 P. aeruginosa, and 7 E. coli, 3 Enterobacter spp., and 2 Klebsiella spp., respectively. The presence of the bla (IMP) and bla (VIM) genes was detected in 2 (2%) and 1 (1%) of MBL-producing isolates. These genes were detected in only MBL-producing P. aeruginosa isolates. CONCLUSION: Our findings suggest the emergence of NDM-producing strains in our hospital, and bla NDM was the most frequently detected carbapenemase gene in MBL-producing P. aeruginosa, K. pneumoniae, and Klebsiella spp. Since such bacteria can easily spread among patients in the hospital, a strong infection control and prevention plan is highly recommended.202337106518
1461120.9882Phenotypic and Genetic Characterization of Carbapenemase and ESBLs Producing Gram-negative Bacteria (GNB) Isolated from Patients with Cystic Fibrosis (CF) in Tehran Hospitals. BACKGROUND: Cystic Fibrosis (CF) is an autosomal recessive genetic disorder in white populations caused by mutation in a gene that encodes Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Since frequent respiratory tract infections are the major problem in patients with CF, obligation to identify the causative bacteria and determining their antibiotic resistance pattern is crucial. The purpose of this project was to detect Gram-negative bacteria (GNB) isolated from sputa of CF patients and to determine their antibiotic resistance pattern. MATERIALS AND METHODS: The sputum of 52 CF patients, treated as inpatients at hospitals in Tehran, was obtained between November 2011 and June 2012. Samples cultured in selective and non-selective media and GNB recognized by biochemical tests. Antimicrobial susceptibility testing to cephalosporins, aminoglycosides and carbapenems was performed by disk diffusion method and MICs of them were measured. For phenotypic detection of carbapenemase and ESBLs production, the Modified Hodge test, double disk synergy test and the combined disk methods were performed. Subsequently, the genes encoding the extended spectrum beta-lactamases (blaPER, blaCTX-M) and carbapenemases (blaIMP-1, blaGES, blaKPC, blaNDM, blaVIM-1, blaVIM-2, blaSPM, blaSIM) in Gram negative bacteria were targeted among the resistant isolates by using PCR. PFGE was used to determine any genetic relationship among the Pseudomonas aeruginosa isolated from these patients. RESULTS: Fifty five GNB were isolated from 52 sputum samples including Pseudomonas aeruginosa, Klebsiella ozaenae, Alcaligenes xylosoxidans, Achromobacter denitrificans, Klebsiella pneumonia and Stenotrophomonas maltophilia. The rates of resistance to different antibiotic were as follows: cefixime (%80), ceftriaxone (%43), ceftazidime (%45) and meropenem (%7). The prevalence of genes encoding the ESBLs and Carbapenemases among the the phenotypically positive strains were as follows: blaCTX-M (19), blaIMP-1 (2), blaVIM-1 (2) and blaVIM-2 (3) genes respectively. No other genes were detected. PFGE analysis revealed 8 genotypes. Six isolates had mutually 3 similar patterns. CONCLUSION: This study showed the existence of important ESBLs and carbapenemases genes among the GNB isolated from patients with CF. Continuous surveillance of ESBLs and Carbapenemases, also identification of their types, in bacteria isolated from these patients have an important clinical impact, since, it can often provide valuable information for effective infection control measures and for the choice of appropriate antimicrobial therapy.201424596716
1429130.9882Detection of blaKPC and blaGES Carbapenemase Genes in Klebsiella pneumoniae Isolated from Hospitalized Patients in Kashan, Iran. INTRODUCTION: Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are among the highly antimicrobial resistant gram negative bacteria and infections due to them are an increasingly major health problem worldwide. METHODS: In this study we have detected the blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. In a cross-sectional study, a total of 181 K. pneumoniae isolates were recovered from clinical specimens during November 2013 to October 2014. RESULT: Antimicrobial susceptibility profiles were determined using disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI guidelines. Carbapenem-resistant K. pneumoniae isolates were identified. PCR method and sequencing were used for detection of blaKPC and blaGES carbapenemase genes. Of the 181 K. pneumoniae isolates, 35 (19.3%) were found to be resistant to imipenem and 150 (82.9%) were identified as MDR strains. Among carbapenems, the most resistant rate 39 (21.5%) was seen against ertapenem using disk diffusion method. Of K. pneumoniae isolates 21 (11.6%) and 42 (23.2%) carried blaKPC and blaGES genes, respectively and 19(10.5%) carried both genes simultaneously. CONCLUSION: The data of current study revealed that the frequency of resistance to carbapenems and production of carbapenemase enzymes especially GES type was high among clinical isolates of K pneumoniae in Kashan, Iran.201627527726
2256140.9882Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. PURPOSE: In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes that are reported in infections acquired in intensive care units (ICU) around the world. METHODS: A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022. RESULTS: A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United States and Estonia. CONCLUSION: Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs.202337384803
2109150.9882Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. BACKGROUND: There are increasing reports of multidrug-resistant gram-negative bacilli in nursing homes and acute care hospitals. METHODS: We performed a point prevalence survey to detect fecal carriage of gram-negative bacteria carrying carbapenem resistance genes or which were otherwise resistant to carbapenem antibiotics among 500 consecutive admissions from local nursing homes to 2 hospitals in Providence, Rhode Island. We performed a case-control study to identify risk factors associated with carriage of carbapenem-resistant Enterobacteriaceae (CRE). RESULTS: There were 404 patients with 500 hospital admissions during which they had rectal swab samples cultured. Fecal carriage of any carbapenem-resistant or carbapenemase- producing gram-negative bacteria was found in 23 (4.6%) of the 500 hospital admissions, including 7 CRE (1.4%), 2 (0.4%) of which were Klebsiella pneumoniae carbapenemase (ie, blaKPC) producing (CPE) Citrobacter freundii, 1 of which was carbapenem susceptible by standard testing methods. Use of a gastrostomy tube was associated with CRE carriage (P = .04). We demonstrated fecal carriage of carbapenem-resistant or carbapenemase-producing gram-negative bacteria in 4.6% of nursing home patients admitted to 2 acute care hospitals, but only 0.4% of such admissions were patients with fecal carriage of CPE. Use of gastrostomy tubes was associated with fecal carriage of gram-negative bacteria with detectable carbapenem resistance. CONCLUSION: CRE fecal carriage is uncommon in our hospital admissions from nursing homes.201626631643
2200160.9881Bloodstream infections and antibiotic resistance at a regional hospital, Colombia, 2019-2021. OBJECTIVES: To assess antibiotic susceptibility of World Health Organization (WHO) priority bacteria (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Salmonella spp., Staphylococcus aureus, and Streptococcus pneumoniae) in blood cultures at the Orinoquía regional hospital in Colombia. METHODS: This was cross-sectional study using routine laboratory data for the period 2019-2021. Data on blood samples from patients suspected of a bloodstream infection were examined. We determined: the total number of blood cultures done and the proportion with culture yield; the characteristics of patients with priority bacteria; and the type of bacteria isolated and antibiotic resistance patterns. RESULTS: Of 25 469 blood cultures done, 1628 (6%) yielded bacteria; 774 (48%) of these bacteria were WHO priority pathogens. Most of the priority bacteria isolated (558; 72%) were gram-negative and 216 (28%) were gram-positive organisms. Most patients with priority bacteria (666; 86%) were hospitalized in wards other than the intensive care unit, 427 (55%) were male, and 321 (42%) were ≥ 60 years of age. Of the 216 gram-positive bacteria isolated, 205 (95%) were Staphylococcus aureus. Of the 558 gram-negative priority bacteria isolated, the three most common were Escherichia coli (34%), Klebsiella pneumoniae (28%), and Acinetobacter baumannii (20%). The highest resistance of Staphylococcus aureus was to oxacillin (41%). For gram-negative bacteria, resistance to antibiotics ranged from 4% (amikacin) to 72% (ampicillin). CONCLUSIONS: Bacterial yield from blood cultures was low and could be improved. WHO priority bacteria were found in all hospital wards. This calls for rigorous infection prevention and control standards and continued surveillance of antibiotic resistance.202337082533
2207170.9881Precision medicine in practice: unravelling the prevalence and antibiograms of urine cultures for informed decision making in federal tertiary care- a guide to empirical antibiotics therapy. BACKGROUND AND OBJECTIVES: Urinary tract infections (UTIs), one of the most prevalent bacterial infections, are facing limited treatment options due to escalating concern of antibiotic resistance. Urine cultures significantly help in identification of etiological agents responsible for these infections. Assessment of antibiotic susceptibility patterns of these bacteria aids in tackling the emerging concern of antibiotic resistance and establishment of empirical therapy guidelines. Our aim was to determine various agents responsible for urinary tract infections and to assess their antibiotic susceptibility patterns. MATERIALS AND METHODS: This cross-sectional study was performed over a period of six months from January 2023 to July 2023 in Department of Microbiology of Pakistan Institute of Medical Sciences (PIMS). RESULTS: Out of 2957 positive samples, Gram negative bacteria were the most prevalent in 1939 (65.6%) samples followed by Gram positive bacteria in 418 (14.1%) and Candida spp. in 269 (9.1%) samples. In gram negative bacteria, Escherichia coli (E. coli) was the most prevalent bacteria isolated from 1070 samples (55.2%) followed by Klebsiella pneumoniae in 397 samples (20.5%). In Gram positive bacteria, Enterococcus spp. was the most common bacteria in 213 samples (51%) followed by Staphylococcus aureus in 120 samples (28.7%). Amikacin was the most sensitive drug (91%) for Gram negative bacteria. Gram positive bacteria were most susceptible to linezolid (97%-100%). CONCLUSION: The generation of a hospital tailored antibiogram is essential for the effective management of infections and countering antibiotic resistance. By adopting antimicrobial stewardship strategies by deeper understanding of sensitivity patterns, we can effectively combat antibiotic resistance.202439267930
2189180.9881High prevalence of Panton-Valentine Leucocidin (PVL) toxin carrying MRSA and multidrug resistant gram negative bacteria in late onset neonatal sepsis indicate nosocomial spread in a Pakistani tertiary care hospital. BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups.202336621204
2119190.9881Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Acquired Metallo-β-Lactamases (MBLs) are emerging resistance determinants in Pseudomonas aeruginosa and other gram-negative bacteria.Using Combination Disk Diffusion test, it was found that among 83 imipenem non-susceptible P. aeruginosa strains, 48 (57.9%) were MBL producers. PCR and Sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate due to MBL-producing Pseudomonas infection was 4 (8.3%) among the hospitalized patients. Therefore, identification of drug resistance patterns in P. aeruginosa and detection of MBLs producing isolates are of great importance in the prevention and control of infections.201323638331