CEFAZOLINE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
122300.8840Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics.201425052999
122610.8834Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene.201324450236
194420.8820Genetic characterization of coliform bacterial isolates from environmental water in Thailand. INTRODUCTION: In contrast to the study in other part of the world, information about characteristics of plasmids carrying antimicrobial resistance genes (ARGs) in Enterobacteriaceae derived from environmental water in tropical Asian countries including Thailand is limited. This study, therefore, aimed to gain insight into genetic information of antimicrobial resistance in environmental water in Thailand. METHODS: Coliform bacteria were isolated from environmental water collected at 20 locations in Thailand and identified. Then, susceptibility profiles to ampicillin, cefazoline, cefotaxime, kanamycin, ciprofloxacin, sulfamethoxazole, tetracycline, and nalidixic acid were assessed. In addition, antimicrobial resistant genes integrons, and replicon types were analyzed. And furthermore, plasmids carrying bla(TEM) and tetM were identified by S1-PFGE analysis and confirmed transmissibility by transconjugation experiments. RESULTS: In 130 coliform bacteria isolated, 89 were resistant to cefazoline while 41 isolates were susceptible. Cefazoline-resistant coliform bacteria were found to be significantly resistant to cefotaxime and tetracycline as compared to susceptible isolates. Hence, bla(TEM) and tetM correlating with β-lactam antibiotics and tetracycline, respectively, were analyzed found to co-localize on the IncFrepB plasmids in isolates from pig farms' wastewater by S1-PFGE analysis. And furthermore, transmissibility of the plasmids was confirmed. CONCLUSIONS: Results obtained in this study suggested that ARGs in coliform bacteria may have been spreading on the farm via IncFrepB plasmids. Hence, appropriate use of antimicrobials and good hygiene management on the farm are required to prevent the emergence and spread of resistant bacteria.202133468426
122730.8819Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance.19902282290
122240.8813Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide.202236406904
122450.8812Prevalence, antibiotic resistance patterns and molecular characterization of Escherichia coli from Austrian sandpits. The aim was to determine the prevalence of E. coli and coliform bacteria in playground sand of all public children's sandpits in Graz (n = 45), Austria, and to assess the frequency of antimicrobial resistance in E. coli. Molecular characterization included the discrimination of O-serotypes and H-antigens and the determination of virulence and resistance genes, using a microarray technology. E. coli isolates were tested for susceptibility to a set of antibiotics by VITEK2 system and disk diffusion method. In total, 22 (49%) and 44 (98%) sandpits were positive for E. coli and coliform bacteria. Median concentrations of E. coli and coliform bacteria in the sand samples were: 2.6 × 10(4) CFU/100 g and 3.0 × 10(5) CFU/100 g. Resistance rates were: ampicillin, 12.5%; piperacillin, 10.4%; amoxicillin/clavulanic acid, 9.4%; cotrimoxazole, 6.3%; tetracycline, 6.3%; piperacillin/tazobactam, 5.2%. No ESBL- or carbapenemase-producing isolates were found. The most prevalent serogroups were O15, O6 and O4. Isolates harbored 0 up to 16 different virulence genes.201425089889
133560.8810Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. AIM: The study was conducted to determine the prevalence and characterization of the Pasteurella multocida isolates from suspected pigs in Vietnam. MATERIALS AND METHODS: A total of 83 P. multocida strains were isolated from lung samples and nasal swabs collected from pigs associated with pneumonia, progressive atrophic rhinitis, or reproductive and respiratory symptoms. Isolates were subjected to multiplex polymerase chain reaction (PCR) for capsular typing, detection of virulence-associated genes and antibiotic resistance genes by PCR. The antimicrobial sensitivity profiles of the isolates were tested by disk diffusion method. RESULTS: All the isolates 83/83 (100%) were identified as P. multocida by PCR: serogroup A was obtained from 40/83 (48.19%), serogroup D was detected from 24/83 strains (28.91%), and serogroup B was found in 19/83 (22.35%) isolates. The presence of 14 virulence genes was reported including adhesins group (ptfA - 93.97%, pfhA - 93.97%, and fimA - 90.36%), iron acquisition (exbB - 100%, and exbD - 85.54%), hyaluronidase (pmHAS - 84.33%), and protectins (ompA - 56.62%, ompH 68.67%, and oma87 - 100%). The dermonecrotoxin toxA had low prevalence (19.28%). The antimicrobial susceptibility testing revealed that cephalexin, cefotaxime, ceftriaxone, ofloxacin, pefloxacin, ciprofloxacin, and enrofloxacin were the drugs most likely active against P. multocida while amoxicillin and tetracycline were inactive. The usage of PCR revealed that 63/83 isolates were carrying at least one of the drug resistance genes. CONCLUSION: Unlike other parts of the word, serotype B was prevalent among Vietnamese porcine P. multocida strains. The high antibiotic resistance detected among these isolates gives us an alert about the current state of imprudent antibiotic usage in controlling the pathogenic bacteria.202032636585
214870.8808Molecular detection of integron genes and pattern of antibiotic resistance in pseudomonas aeruginosa strains isolated from intensive care unit, shahid beheshti hospital, north of iran. Pseudomonas aeruginosa is one of the most important pathogens that causes nosocomial infections and shows high level of antibiotic resistance. Integrons are one of the transposable elements in bacteria and their role in antibiotic resistance has been well demonstrated. The aim of this study was a molecular characterization of the integron genes and the determination of the resistance or sensitivity pattern to ceftizoxime, cephizoxim. cephotaxim, amikacin, ofloxacin, imipenem, cefepime, ticarcillin, gentamicin, ciprofloxacin, cefazolin and ceftriaxone antibiotics in P. aeruginosa strains isolated from Intensive Care Units (ICU), Shahid Beheshti Hospital, North of Iran. This cross-sectional study was performed from 2011 to 2012. Totally, fifty four P. aeruginosa strains were isolated from ICU at Shahid-Beheshti hospital, Babol, North of Iran. The bacteria were diagnosed based on mobility, pigment production, growth in 42(0) C, oxidase and catalase tests. PCR analysis was carried out to detect integron genes using hep 35 and hep 36 primers. Also, disk diffusion method was performed to evaluate antibiotic susceptibility of the bacteria using ceftizoxime, ceftazidime, cephotaxime, amikacin, ofloxacin, imipenem, cefepime, ticarcillin, gentamicin, ciprofloxacin, cefazolin and ceftriaxone antibacterial reagents. This study revealed that 20 (37%) P. aeruginosa isolates had integron genes. The antibiotic susceptibility test showed that 53 (98.1%) of the isolates were multidrug-resistant. 12 out of 54 isolated bacteria were resistant to all antibiotics tested. All bacteria were resistant to cefepime and the highest resistance rate was seen to ceftizoxime 92.6% followed by cefazolin 92.3%. The lowest resistance rate was observed to ciprofloxacin 38.9%, ofloxacin 44.4%, amikacin 46.3% and ticarcillin 48.1%. According to this study, P. aeruginosa isolates showed high level of antibiotic resistance and the presence of integrons in these strains can explain the influence of these genes in resistance creation. There was a significant association between resistance to cefotaxime, amikacin, ofloxacin, imipenem, ticarcillin, gentamicin and the presence of integrons.201224551780
152880.8806First Report of Coexistence of bla (SFO-1) and bla (NDM-1) β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (bla (SFO-1), bla (NDM-1), and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the bla (SFO-1), bla (NDM-1), and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes.202134220761
129490.8806Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. OBJECTIVE: This study aimed to isolate and identify Escherichia coli from broiler samples from Sukabumi, Indonesia. Also, antibiogram studies of the isolated bacteria were carried out considering the detection of the antibiotic resistance genes. MATERIALS AND METHODS: Cloaca swabs (n = 45) were collected from broilers in Sukabumi, Indonesia. Isolation and identification of E. coli were carried out according to standard bacteriological techniques and biochemical tests, followed by confirmation of the polymerase chain reaction targeting the uspA gene. Antibiotic sensitivity test, using several antibiotics [tetracycline (TE), oxytetracycline (OT), ampicillin (AMP), gentamicin (CN), nalidixic acid (NA), ciprofloxacin (CIP), enrofloxacin (ENR), chloramphenicol, and erythromycin] was carried out following the Kirby-Bauer disk diffusion method. Detection of antibiotic resistance coding genes was carried out by PCR using specific oligonucleotide primers. Statistical analysis was carried out with one-way analysis of variance. RESULTS: The results showed that 55.6% (25/45) of the samples were associated with the presence of E. coli. Antibiotic sensitivity test showed that the E. coli isolates were resistant to TE (88%; 22/25), OT (88%; 22/25), AMP (100%; 25/25), CN (64%; 16/25), NA (100%; 22/25), CIP (88%; 22/25), ENR (72%; 18/25), chloramphenicol (0%; 0/25), and erythromycin (92%; 23/25). On the other hand, the antibiotic resistance coding genes were tetA (86.4%; 19/22), blaTEM (100%; 25/25), aac(3)-IV (0%; 0/16), gyrA (100%; 25/25), and ermB (13%; 3/23). It was found that chloramphenicol is markedly different from other antibiotic treatment groups. CONCLUSION: Escherichia coli was successfully isolated from cloacal swabs of broiler in Sukabumi, Indonesia. The bacteria were resistant to TE, OT, AMP, CN, NA, CIP, ENR, and erythromycin. Chloramphenicol was more sensitive and effective than other antibiotics in inhibiting the growth of E. coli. The antibiotic resistance genes detected were tetA, blaTEM, gyrA, and ermB.202133860017
1456100.8806Resistance and Co-Resistance of Metallo-Beta-Lactamase Genes in Diarrheal and Urinary-Tract Pathogens in Bangladesh. Carbapenems are the antibiotics of choice for treating multidrug-resistant bacterial infections. Metallo-β-lactamases (MBLs) are carbapenemases capable of hydrolyzing nearly all therapeutically available beta-lactam antibiotics. Consequently, this research assessed the distribution of two MBL genes and three β-lactamases and their associated phenotypic resistance in diarrheal and urinary-tract infections (UTIs) to guide future policies. Samples were collected through a cross-sectional study, and β-lactamase genes were detected via PCR. A total of 228 diarrheal bacteria were isolated from 240 samples. The most predominant pathogens were Escherichia coli (32%) and Klebsiella spp. (7%). Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 50.4%, 65.6%, 66.8%, 80.5%, 54.4%, 41.6%, 25.7%, 41.2%, 37.2%, and 42.9%, respectively. A total of 142 UTI pathogens were identified from 150 urine samples. Klebsiella spp. (39%) and Escherichia coli (24%) were the major pathogens isolated. Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 93.7%, 75.0%, 91.5%, 93.7%, 88.0%, 72.5%, 13.6%, 44.4%, 71.1%, and 43%, respectively. Twenty-four diarrheal isolates carried blaNDM-1 or blaVIM genes. The overall MBL gene prevalence was 10.5%. Thirty-six UTI pathogens carried either blaNDM-1 or blaVIM genes (25.4%). Seven isolates carried both blaNDM-1 and blaVIM genes. MBL genes were strongly associated with phenotypic carbapenem and other β-lactam antibiotic resistance. blaOXA imparted significantly higher phenotypic resistance to β-lactam antibiotics. Active surveillance and stewardship programs are urgently needed to reduce carbapenem resistance in Bangladesh.202439203431
1296110.8804Prevalence and antimicrobial resistance of Salmonellaisolates from goose farms in Northeast China. BACKGROUND: Salmonella is one of the most important enteric pathogenic bacteria that threatened poultry health. AIMS: This study aimed to investigate the prevalence and antimicrobial resistance of Salmonella isolates in goose farms. METHODS: A total of 244 cloacal swabs were collected from goose farms to detect Salmonella in Northeast China. Antimicrobial susceptibility, and resistance gene distribution of Salmonella isolates were investigated. RESULTS: Twenty-one Salmonella isolates were identified. Overall prevalence of Salmonella in the present study was 8.6%. Among the Salmonella isolates, the highest resistance frequencies belonged to amoxicillin (AMX) (85.7%), tetracycline (TET) and trimethoprim/sulfamethoxazole (SXT) (81%), followed by chloramphenicol (CHL) (76.2%), florfenicol (FLO) (71.4%), kanamycin (KAN) (47.6%), and gentamycin (GEN) (38.1%). Meanwhile, only 4.8% of the isolates were resistant to ciprofloxacin (CIP) and cefotaxime (CTX). None of the isolates was resistant to cefoperazone (CFP) and colistin B (CLB). Twenty isolates (95%) were simultaneously resistant to at least two antimicrobials. Ten resistance genes were detected among which the bla (TEM-1), cmlA, aac(6')-Ib-cr, sul1, sul2, sul3, and mcr-1.1 were the most prevalent, and presented in all 21 isolates followed by tetB (20/21), qnrB (19/21), and floR (15/21). CONCLUSION: Results indicated that Salmonella isolates from goose farms in Northeast China exhibited multi-drug resistance (MDR), harboring multiple antimicrobial resistance genes. Our results will be useful to design prevention and therapeutic strategies against Salmonella infection in goose farms.202033584841
1236120.8804Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa.201121338385
1270130.8803Multiantibiotic resistance of gram-negative bacteria isolated from drinking water samples in southwest Greece. In this study we monitored the sensitivity of 239 gram-negative bacteria (of fecal and non-fecal origin), isolated from the old drinking water distribution network of Patras in southwestern Greece, to 20 antibiotic agents. Two methods were used to find the multiresistant bacteria (bacteria resistant to two or more antibiotics): the diffusion disk method and a serial dilution method. The gram-negative bacteria tested were: Enterobacteriaceae (62), Pseudomonas (145), Vibrionaceae (24), Chromobacter (3), Acinetobacter (2) and others (4). The highest levels of antibiotic resistance were obtained for cephalothin (86.7%), ampicillin (77.5%) and carbenicillin (71%) followed by cefoxitin (55.4%) and cefuroxime (51.2%). Intermediate resistance levels were found for ticarcillin (31.3%), ceftizoxime (31.2%), chloramphenicol (30.3%), and cefotetan (25.2%). Low resistance levels were obtained for cefotaxime (17.9%), sulfisoxazole (15.2%), ceftriaxone (12.5%), tetracycline (11.9%), trimethoprim/sulfamethoxazole (7.4%) and piperacillin (2.4%). Overall 91.3% of the gram-negative bacteria isolated from drinking water were multiresistant. No resistant strains were found to quinolones, aminoglycosides, imipenem, aztreonam, ceftazidime or cefoperazone. The high antibiotic resistance rate of the isolated microorganisms from the Patras drinking water supply is discussed.200010949974
1309140.8801Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Pulsed field gel electrophoresis (PFGE) patterns, susceptibility to 26 antimicrobial agents used in veterinary and human medicine, and prevalence of antimicrobial resistance genes of Escherichia coli isolated from cows with mastitis were evaluated. Among 135 E. coli isolates, PFGE analysis revealed 85 different genetic patterns. All E. coli were resistant to two or more antimicrobials in different combinations. Most E. coli were resistant to antimicrobials used in veterinary medicine including ampicillin (98.4%, >or=32 microg/ml) and many E. coli were resistant to streptomycin (40.3%, >or=64 microg/ml), sulfisoxazole (34.1%, >or=512 microg/ml), and tetracycline (24.8%, >or=16 microg/ml). Most E. coli were resistant to antimicrobials used in human medicine including aztreonam (97.7%, >or=32 microg/ml) and cefaclor (89.9%, >or=32 microg/ml). Some E. coli were resistant to nitrofurantoin (38%, >or=128 microg/ml), cefuroxime (22.5%, >or=32 microg/ml), fosfomycin (17.8%, >or=256 microg/ml). All E. coli were susceptible to ciprofloxacin and cinoxacin. Almost 97% (123 of 127) of ampicillin-resistant isolates carried ampC. Eleven of 52 (21.2%) streptomycin-resistant isolates carried strA, strB and aadA together and 29 streptomycin-resistant isolates (55.8%) carried aadA alone. Among 44 sulfisoxazole-resistant E. coli, 1 isolate (2.3%) carried both sulI and sulII, 12 (27.3%) carried sulI and 10 (22.7%) isolates carried sulII. Among 32 tetracycline-resistant isolates, 14 (43.8%) carried both tetA and tetC and 14 (43.8%) carried tetC. Results of this study demonstrated that E. coli from cows with mastitis were genotypically different, multidrug resistant and carried multiple resistance genes. These bacteria can be a reservoir for antimicrobial resistance genes and can play a role in the dissemination of antimicrobial resistance genes to other pathogenic and commensal bacteria in the dairy farm environment.200717544234
1472150.8801Incidence and antibiotic susceptibility profile of uropathogenic Escherichia coli positive for extended spectrum β-lactamase among HIV/AIDS patients in Awka metropolis, Nigeria. BACKGROUND AND OBJECTIVES: This study investigated the incidence and antibiotic susceptibility profile of extended spectrum β-lactamase (ESBL) producing uropathogenic Escherichia coli recovered from HIV/AIDS patients in Awka metropolis, Nigeria. MATERIALS AND METHODS: A total of 363 urine samples were bacteriologically analyzed for the isolation of E. coli isolates which were further characterized using standard microbiology techniques. The isolated uropathogenic E. coli was tested for susceptibility to a range of clinically important antibiotics using the modified disk diffusion technique. All E. coli isolates were phenotypically screened for ESBL production using the combined disk technique, and strains which were positive were further confirmed for the presence of ESBL genes using PCR technique. RESULTS: A total 160 (44.1%) non-duplicate isolates were bacteriologically confirmed to be uropathogenic E. coli (UPEC). The E. coli isolates showed reduced susceptibility to important antibiotics including ceftazidime (76.88%), cefuroxime (77.5%), cefixime (61.88%), amoxicillin-clavulanic (32.5%) and ciprofloxacin (34.38%). Twenty-seven of the UPEC isolates were phenotypically confirmed to be ESBL producers. PCR test confirmed some important genes mediating ESBL production in Gram negative bacteria including bla (TEM) (5.0%) and bla (CTX-M-15) (6.9%) genes. CONCLUSION: We report a high prevalence of ESBL producers among HIV/AIDS patients in Awka, Nigeria. This result is important as antibiotic resistance (ABR) particularly those mediated by multidrug resistant bacteria as reported in this current study could complicate treatment outcome, worsen the individual's health, and even increase cost of treatment and hospitalization. It is therefore important to lookout for ESBL positive UPEC amongst HIV/AIDS patients in Nigeria.202237124857
1167160.8800Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), bla(CMY) (2/10), and qnrS, bla(TEM), bla(CMY), bla(CTX-M), and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings.202439168034
2129170.8799Screening of antibiotic resistance genes in pathogenic bacteria isolated from tiny freshwater shrimp (Macrobrachium lanchesteri) and "Kung Ten", the uncooked Thai food. OBJECTIVE: This study aimed to isolate and identify of pathogenic bacteria in tiny freshwater shrimp (Macrobrachium lanchesteri) and in Kung Ten, which is an unusual Thai cuisine that eaten alive shrimp directly. Antimicrobial susceptibility test and identification of antibiotic resistance genes for isolated bacteria were conducted. MATERIALS AND METHODS: Eighty of fresh shrimp samples and forty of Kung Ten salads were collected from four fresh markets, which were located in Bangkok and Nonthaburi province (N = 120). The isolation, identification, and antimicrobial susceptibility test of pathogenic bacteria were done following the Clinical and Laboratory Standards Institute guidelines. Antibiotic-resistant bacteria were screened for β-lactamase relating genes, such as AmpC (MOX and ACC genes), bla (CTX-M), and Int1 genes. RESULTS: The number of bacterial isolates in tiny freshwater shrimp and Kung Ten salad was 136 and 65, respectively. Aeromonas caviae, A. hydrophilla, Proteus penneri, Proteus vulgaris, and Klebsiella pneumoniae were commonly found. Ampicillin, amoxicillin/clavulanic, cefuroxime, tetracycline, and trimethoprim/sulfamethoxazole resistance were observed, and common antibiotic-resistant bacteria were A. caviae, P. vulgaris, Enterobacter Aerogenes, and K. pneumoniae. A. caviae, P. penneri, K. Pneumoniae, and A. hydrophilla were positive for MOX gene; bla (CTX-M), and Int1 genes; ACC and Int1 genes; and ACC gene, respectively. CONCLUSION: Raw or uncooked shrimps in Kung Ten salad may a risk in foodborne diseases due to positive for pathogenic bacterial isolates. However, hygienic control on food preparation is difficult to apply because of the difficulty of changing in local Thai food behavior.202032219114
1245180.8799Mutation-based fluoroquinolone resistance in carbapenem-resistant Acinetobacter baumannii and Escherichia coli isolates causing catheter-related bloodstream infections. OBJECTIVE: We studied the presence of mutations in the chromosomal quinolone resistance-determining regions (QRDRs) of the fluoroquinolone targets gyrA and parC genes and detected the carbapenem resistance (CR) encoding genes among Acinetobacter baumannii and Escherichia coli isolates from catheter-related bloodstream infections (CRBSIs). METHODS: The study included 39 non-duplicate isolates of A. baumannii (14/39, 35.9%) and E. coli (25/39, 64.1%) isolated from 128 confirmed CRBSIs cases. Antimicrobial susceptibility testing was performed, followed by an evaluation of biofilm formation using the tissue culture plate method. The carbapenemase encoding genes were detected by multiplex polymerase chain reaction (PCR). The mutations in QRDRs of gyrA and parC genes were determined by singleplex PCR amplification followed by DNA sequencing and BlastN analysis in the GenBank database. DNA and the translated amino acid sequences were analyzed using the Mega7 bioinformatics tool. RESULTS: Multidrug-resistant (MDR) E. coli and A. baumannii isolates harbored CR encoding genes and combined gyrA and parC genes mutation. The specific substitutions observed in GyrA were Cys173Arg, Cys174Gly, Asp80Val, Tyr178ASP, Tyr84Gly, Glu85Lys, Ser172Leu, and Asp176Asn, while the specific substitutions observed in the ParC amino acid sequence were point mutation 62 Arg, Phe60Leu, Ils66Val, and Gln76Lys. Point mutation 62Arg was detected in two A. baumannii isolates, whereas Ser172Leu mutation was observed in two E. coli isolates. CONCLUSION: The presence of new single and multiple mutations in QRDR causes the emergence of MDR E. coli and A. baumannii infections in carbapenem-resistant Enterobacteriaceae in Egypt, requiring further investigation in Gram-negative bacteria.202337151743
1252190.8799Fluoroquinolone resistance in bacterial isolates from ocular infections: Trend in antibiotic susceptibility patterns between 2005-2020. PURPOSE: To assess the fluoroquinolone resistance pattern and trends among bacterial isolates from ocular infections over a 16-year period and explore alternative antibiotics in fluoroquinolone-resistant strains. METHODS: In this retrospective, longitudinal study, the microbiology laboratory records of patients with different ocular infections diagnosed at an eye institute in central India from 2005-2020 were reviewed to determine the pattern of fluoroquinolone (ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin) resistance. Antibiotic susceptibility testing was done using the Kirby-Bauer disc diffusion method. RESULTS: In 725 Gram-positive bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 55.9% (95% confidence interval [CI]: 52.2 - 59.6), 42.7% (95% CI: 39.0 - 46.4), 47.6% (95% CI: 43.9 - 51.3), and 45.6% (95% CI: 41.7-49.5), respectively. In 266 Gram-negative bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 57.9% (95% CI: 51.9 - 63.9), 56.0% (95% CI: 49.7 - 62.1), 59.9% (95% CI: 53.8 - 66.0), and 74.3% (95% CI: 68.3 - 80.2), respectively. A declining trend in resistance to ciprofloxacin (P < 0.001), ofloxacin (P < 0.001), and moxifloxacin (P < 0.001) was seen in Gram-positive bacteria, whereas a reduction in resistance to only moxifloxacin (P = 0.04) was seen in Gram-negative bacteria. In fluoroquinolone-resistant Gram-positive bacteria, cefuroxime exhibited the highest susceptibility, whereas in fluoroquinolone-resistant Gram-negative bacteria, colistin exhibited the highest susceptibility. CONCLUSION: Fluoroquinolone resistance was high among bacteria from ocular infections in central India, but a declining trend in resistance to some of the fluoroquinolones was observed in recent times. Cefuroxime and colistin emerged as alternatives in fluoroquinolone-resistant Gram-positive and Gram-negative bacterial infections, respectively.202236453351