# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1236 | 0 | 0.9857 | Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa. | 2011 | 21338385 |
| 1233 | 1 | 0.9853 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1235 | 2 | 0.9852 | Characterization of integrons and antimicrobial resistance genes in clinical isolates of Gram-negative bacteria from Palestinian hospitals. Sixty Gram-negative bacterial isolates were collected from Palestinian hospitals in 2006. Thirty-two (53.3%) isolates showed multidrug resistance phenotypes. PCR and DNA sequencing were used to characterize integrons and antimicrobial resistance genes. PCR screening showed that 19 (31.7%) and five (8.3%) isolates were positive for class 1 and class 2 integrons, respectively. DNA-sequencing results for the captured antimicrobial resistance gene cassettes within class 1 integrons identified the following genes: dihydrofolate reductases, dfrA1, dfrA5, dfrA7, dfrA12, dfrA17 and dfrA25; aminoglycoside adenyltransferases, aadA1, aadA2, aadA5, aadA12 and aadB; aminoglycoside acetyltransferase, aac(6')-Ib; and chloramphenicol resistance gene, cmlA1. ESBL were identified in 25 (41.7%) isolates. The identified ESBL were bla(CTX-M-15), bla(CTX-M-56), bla(OXA-1), bla(SHV-1), bla(SHV-12), bla(SHV-32) and bla(TEM-1) genes. Moreover, we characterized the plasmid-mediated quinolone resistance genes, aac(6')-Ib-cr and qnrB2, which were detected in seven (11.7%) and two (3.3%) isolates, respectively. In this study various types of antibiotic resistance genes have been identified in Gram-negative bacteria from Palestinian hospitals, many of which are reported in the Middle East area for the first time. | 2009 | 19903259 |
| 1232 | 3 | 0.9852 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1388 | 4 | 0.9847 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1409 | 5 | 0.9845 | Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria. | 2021 | 33617559 |
| 1240 | 6 | 0.9845 | Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). Bla(CTX-M) genes were detected in 50% (32/64) of isolates, with bla(CTX-M-15) being the most common. Bla(TEM-1), bla(SHV-1) and bla(VIM) genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance. | 2024 | 39066817 |
| 1218 | 7 | 0.9844 | Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1. | 2020 | 31999747 |
| 1226 | 8 | 0.9844 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1223 | 9 | 0.9844 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |
| 1114 | 10 | 0.9843 | Third-Generation Cephalosporin Resistance in Intrinsic Colistin-Resistant Enterobacterales Isolated from Retail Meat. Consumption of retail meat contaminated with antimicrobial-resistant (AMR) bacteria is a common route for transmitting clinically relevant resistant bacteria to humans. Here, we investigated the genotypic and phenotypic resistance profiles of intrinsic colistin-resistant (ICR) Enterobacterales isolated from retail meats. ICR Enterobacterales were isolated from 103 samples of chicken, 103 samples of pork, and 104 samples of beef purchased from retail shops in Japan, using colistin-containing media, and their antimicrobial susceptibility was examined. Serratia spp. (440 isolates) showed resistance to cefotaxime (19 isolates, 4.3%), tetracycline (15 isolates, 3.4%), and other antimicrobials (<1%). Hafnia spp. (136) showed resistance to cefotaxime (12 isolates, 8.6%), ceftazidime (four isolates, 2.9%), and tetracycline (two isolates, 1.4%). Proteus spp. (39) showed resistance to chloramphenicol (four isolates, 10.3%), sulfamethoxazole-trimethoprim (four isolates, 10.3%), cefotaxime (two isolates, 5.1%), kanamycin (two isolates, 5.1%), and gentamicin (one isolate, 2.6%). Cedecea spp. (22) were resistant to tetracycline (two isolates, 9.1%) whereas Morganella spp. (11) were resistant to tetracycline (four isolates, 36.4%) and chloramphenicol (one isolate, 9.2%). The resistance genes bla(fonA), bla(ACC), and bla(DHA) were detected in cefotaxime-resistant Serratia spp., Hafnia spp., and Morganella spp. isolates, respectively. This emergence of antimicrobial resistance in ICR Enterobacterales may pose a public health risk. | 2021 | 34943649 |
| 1451 | 11 | 0.9841 | Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons. | 2021 | 33923991 |
| 1222 | 12 | 0.9841 | Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide. | 2022 | 36406904 |
| 1296 | 13 | 0.9840 | Prevalence and antimicrobial resistance of Salmonellaisolates from goose farms in Northeast China. BACKGROUND: Salmonella is one of the most important enteric pathogenic bacteria that threatened poultry health. AIMS: This study aimed to investigate the prevalence and antimicrobial resistance of Salmonella isolates in goose farms. METHODS: A total of 244 cloacal swabs were collected from goose farms to detect Salmonella in Northeast China. Antimicrobial susceptibility, and resistance gene distribution of Salmonella isolates were investigated. RESULTS: Twenty-one Salmonella isolates were identified. Overall prevalence of Salmonella in the present study was 8.6%. Among the Salmonella isolates, the highest resistance frequencies belonged to amoxicillin (AMX) (85.7%), tetracycline (TET) and trimethoprim/sulfamethoxazole (SXT) (81%), followed by chloramphenicol (CHL) (76.2%), florfenicol (FLO) (71.4%), kanamycin (KAN) (47.6%), and gentamycin (GEN) (38.1%). Meanwhile, only 4.8% of the isolates were resistant to ciprofloxacin (CIP) and cefotaxime (CTX). None of the isolates was resistant to cefoperazone (CFP) and colistin B (CLB). Twenty isolates (95%) were simultaneously resistant to at least two antimicrobials. Ten resistance genes were detected among which the bla (TEM-1), cmlA, aac(6')-Ib-cr, sul1, sul2, sul3, and mcr-1.1 were the most prevalent, and presented in all 21 isolates followed by tetB (20/21), qnrB (19/21), and floR (15/21). CONCLUSION: Results indicated that Salmonella isolates from goose farms in Northeast China exhibited multi-drug resistance (MDR), harboring multiple antimicrobial resistance genes. Our results will be useful to design prevention and therapeutic strategies against Salmonella infection in goose farms. | 2020 | 33584841 |
| 1389 | 14 | 0.9840 | Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required. | 2021 | 34956131 |
| 1295 | 15 | 0.9840 | Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas. | 2009 | 19168331 |
| 1113 | 16 | 0.9839 | Prevalence of Colistin-Resistant Bacteria among Retail Meats in Japan. Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes (mcr) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas, >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr-1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr-3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats. | 2021 | 34249589 |
| 1375 | 17 | 0.9839 | Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Ninety-nine Escherichia coli and 33 Salmonella isolates were assessed for antimicrobial susceptibility (disc diffusion test). Sulfonamide and tetracycline resistance genes were identified through PCR, and class 1 and class 2 integrons with resistance gene cassettes were identified with PCR followed by sequencing. Salmonella (63.6%) and E. coli (85.8%) isolates were multidrug resistant (resistance to 3 or more antimicrobials), and the highest incidences of resistance were observed for tetracycline, nalidixic acid, and sulfamethoxazole. The sul1, sul2, tetA, and tetB resistance determinant genes were predominant in E. coli, whereas only sul2 and tetA were identified in Salmonella isolates. In the E. coli isolates, 54 (54.5%) class 1 integrons, 6 (6.1%) class 2 integrons, and 5 (5.1%) class 1 and class 2 integrons together were detected, whereas only 3 (9.1%) integrons were found in the Salmonella serovars. Around 87% of the integrons in E. coli harbored resistance gene cassettes conferring resistance to streptomycin/spectinomycin (aadA, aminoglycoside resistance gene), trimethoprim (dfrA, dihydrofolate reductase gene), streptothricin [sat1 and sat2 (streptothricin acetyltransferase), and estX (putative esterases)]. The most common gene cassettes were aadA1+dfrA1 and dfrA1+sat2+aadA1 in class 1 and class 2 integrons, respectively. Other cassettes including aadA5+dfrA7, dfrA12+aadA2, aadA2+aadA1+dfrA12, and aadA5+aadA2/dfrA7 were also identified. Among the Salmonella serovars, Salmonella Malmoe harbored aadA1+dfrA1 and dfrA12+sat2+aadA1 genes. The aadA1, aadA2, sat2, and dfrA1 had wide variation in similarity among themselves and from previously reported genes worldwide. The diverse gene cassettes could be responsible for the prominent resistance profiles observed and a potential source for dissemination of antimicrobial resistance determinants to other bacteria. | 2013 | 24135609 |
| 1238 | 18 | 0.9839 | Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health. | 2022 | 36015067 |
| 1992 | 19 | 0.9838 | Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs) between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in bacteria from animals, thus creating a foodborne risk to human health. To investigate MDR and its association with plasmids in Salmonella enterica, whole genome sequence (WGS) analysis was performed on 193 S. enterica isolated from sources associated with United States food animals between 1998 and 2011; 119 were resistant to at least one antibiotic tested. Isolates represented 86 serotypes and variants, as well as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids were identified among the 193 strains. Every isolate contained at least one AR gene. At least one plasmid was detected in 157 isolates. Genes were identified for resistance to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides (n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48), and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32), ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7), and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4% of cases. Most AR genes were located on plasmids, with many plasmids harboring multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-cassette were identified. ARCs contained between one and five resistance genes (ARC1: sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6: tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates and on plasmids of multiple replicon types. To determine the current distribution and frequency of these ARCs, the public NCBI database was analyzed, including WGS data on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014 to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates, while ARC6 was significantly associated with chicken isolates. This study revealed that a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic resistance seen in Salmonella isolated from United States food animals. It was also determined that many plasmids carry similar ARCs. | 2019 | 31057528 |