CASE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
846800.9992Development and validation of a species-independent functional gene microarray that targets lactic acid bacteria. During the last few years, genome-related information has become available for many microorganisms, including important food-related bacteria. Lactic acid bacteria (LAB) are important industrially in the production of fermented foods such as dairy products, sausages, sourdoughs, and vegetables. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as flavor and texture. In the present study, a species-independent functional gene microarray was developed that targets 406 genes that play key roles in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in the stress response. Also, genes linked to negative traits, such as antibiotic resistance and virulence, are represented. As LAB ecosystems contain a variety of species, there was a more global focus on these specific functional properties. Thus, an algorithm was used to design gene-specific oligonucleotides that preferably hybridize with multiple LAB species, thereby allowing controlled cross-hybridization. For proof of concept, the microarray composed of 2,269 30-mer oligonucleotides focused on LAB species that are prevalent in sourdough ecosystems. Validation hybridizations using DNA and RNA from 18 LAB strains, covering 86% of all the oligonucleotides, showed that there were wide ranges in intensity and high reproducibility between microarrays.200919684161
463410.9992Genome analysis reveals a biased distribution of virulence and antibiotic resistance genes in the genus Enterococcus and an abundance of safe species. Enterococci are lactic acid bacteria (LAB) that, as their name implies, often are found in the gastrointestinal tract of animals. Like many other gut-dwelling LAB, for example, various lactobacilli, they are frequently found in other niches as well, including plants and fermented foods from all over the world. In fermented foods, they contribute to flavor and other organoleptic properties, help extend shelf life, and some even possess probiotic properties. There are many positive attributes of enterococci; however, they have been overshadowed by the occurrence of antibiotic-resistant and virulent strains, often reported for the two species, Enterococcus faecalis and Enterococcus faecium. More than 40,000 whole-genome sequences covering 64 Enterococcus type species are currently available in the National Center for Biotechnology Information repository. Closer inspection of these sequences revealed that most represent the two gut-dwelling species E. faecalis and E. faecium. The remaining 62 species, many of which have been isolated from plants, are thus quite underrepresented. Of the latter species, we found that most carried no potential virulence and antibiotic resistance genes, an observation that is aligned with these species predominately occupying other niches. Thus, the culprits found in the Enterococcus genus mainly belong to E. faecalis, and a biased characterization has resulted in the opinion that enterococci do not belong in food. Since enterococci possess many industrially desirable traits and frequently are found in other niches besides the gut of animals, we suggest that their use as food fermentation microorganisms is reconsidered.IMPORTANCEWe have retrieved a large number of Enterococcus genome sequences from the National Center for Biotechnology Information repository and have scrutinized these for the presence of virulence and antibiotic resistance genes. Our results show that such genes are prevalently found in the two species Enterococcus faecalis and Enterococcus faecium. Most other species do not harbor any virulence and antibiotic resistance genes and display great potential for use as food fermentation microorganisms or as probiotics. The study contributes to the current debate on enterococci and goes against the mainstream perception of enterococci as potentially dangerous microorganisms that should not be associated with food and health.202540202320
418120.9992The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics.200616956128
507530.9992Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.202439409516
417940.9992Epidemiology of Antimicrobial Resistance Genes in Streptococcus agalactiae Sequences from a Public Database in a One Health Perspective. Streptococcus agalactiae is a well-known pathogen in humans and food-producing animals. Therefore, this bacterium is a paradigmatic example of a pathogen to be controlled by a One Health approach. Indeed, the zoonotic and reverse-zoonotic potential of the bacteria, the prevalence of Group B Streptococci (GBS) diseases in both human and animal domains, and the threatening global situation on GBS antibiotic resistance make these bacteria an important target for control programs. An epidemiological analysis using a public database containing sequences of S. agalactiae from all over the world was conducted to evaluate the frequency and evolution of antibiotic resistance genes in those isolates. The database we considered (NCBI pathogen detection isolate browser-NPDIB) is maintained on a voluntary basis. Therefore, it does not follow strict epidemiological criteria. However, it may be considered representative of the bacterial population related to human diseases. The results showed that the number of reported sequences increased largely in the last four years, and about 50% are of European origin. The frequency data and the cluster analysis showed that the AMR genes increased in frequency in recent years and suggest the importance of verifying the application of prudent protocols for antimicrobials in areas with an increasing frequency of GBS infections both in human and veterinary medicine.202236140016
434550.9991Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.201425101644
507960.9991Development of a Rapid, Culture-Free, Universal Microbial Identification System Using Internal Transcribed Spacer Targeting Primers. The indiscriminate administration of broad-spectrum antibiotics is a primary contributor to the increasing prevalence of antibiotic resistance. Unfortunately, culture, the gold standard for bacterial identification is a time intensive process. Due to this extended diagnostic period, broad-spectrum antibiotics are generally prescribed to prevent poor outcomes. To overcome the deficits of culture-based methods, we have developed a rapid universal bacterial identification system. The platform uses a unique universal polymerase chain reaction primer set that targets the internal transcribed spacer regions between conserved bacterial genes, creating a distinguishable amplicon signature for every bacterial species. Bioinformatic simulation demonstrates that nearly every bacteria in a set of 45 commonly isolated pathogenic species can be uniquely identified using this approach. We experimentally confirmed these predictions on a representative set of pathogenic bacterial species. We further showed that the system can determine the corresponding concentration of each pathogen. Finally, we validated performance in clinical urinary tract infection samples.202539503259
463170.9991Genome Analysis of an Enterococcal Prophage, Entfac.MY. BACKGROUND: Bacteriophages are bacterial parasites. Unlike lytic bacteriophages, lysogenic bacteriophages do not multiply immediately after entering the host cells and may integrate their genomes into the bacterial genomes as prophages. Prophages can include various phenotypic and genotypic effects on the host bacteria. Enterococcus spp. are Gram-positive bacteria that cause infections in humans and animals. In recent decades, these bacteria have become resistant to various antimicrobials, including vancomycin. The aim of this study was to analyze genome of an enterococcal prophage. METHODS: In this study, Enterococcus faecium EntfacYE was isolated from biological samples and its genome was analyzed using next-generation sequencing method. RESULTS: Overall, 254 prophage genes were identified in the bacterial genome. The prophage included 39 housekeeping, 41 replication and regulation, 80 structural and packaging, and 48 lysis genes. Moreover, 46 genes with unknown functions were identified. All genes were annotated in DNA Data Bank of Japan. CONCLUSION: In general, most prophage genes were linked to packaging and structure (31.5%) gene group. However, genes with unknown functions included a high proportion (18.11%), which indicated necessity of further analyses. Genomic analysis of the prophages can be effective in better understanding of their roles in development of bacterial resistance to antibiotics. Moreover, identification and study of prophages can help researchers develop genetic engineering tools and novel infection therapies.202236061127
463380.9991Detection of Helicobacter pylori virulence-associated genes. Helicobacter pylori is an important human pathogen and persistent colonization of the human gastric mucosa can cause severe gastrointestinal diseases. The bacterium should not be considered as a uniform organism, but as a population of closely related and yet genetically diverse bacteria. Several genes of H. pylori (such as vacA and cagA) have been identified as being virulence-associated and may have important clinical and epidemiological implications. Assessment of virulence-associated genes of H. pylori should be included in clinical and epidemiological studies as well as therapeutic trials, in order to stratify between patient groups, harboring H. pylori strains with particular virulence genotypes. Molecular determination of antibiotic resistance will be especially useful for treatment studies. Together with our increasing knowledge about the human genome, typing of H. pylori will facilitate the management of gastroenterological pathologies.200111901834
439390.9991Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution. Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria. To identify mutations that confer resistance to anti-S. aureus drugs, we established a laboratory-based adaptive evolution system and performed 10 rounds of evolution experiments against 15 clinically used antibiotics. We discovered a panel of known and novel resistance-associated sites after performing whole-genome sequencing. Furthermore, we found that the resistance evolved at distinct rates. For example, streptomycin, rifampicin, fusidic acid and novobiocin all developed significant resistance quickly in the second round of evolution. Intriguingly, the cross-resistance experiment reveals that nearly all drug-resistant strains have varying degrees of increased sensitivity to fusidic acid, pointing to a novel approach to battle AMR. In addition, the in silico docking analysis shows that the evolved mutants affect the interaction of rifampcin-rpoB, as well as the novobiocin-gyrB. Moreover, for the genes we got in the laboratory evolution, mutant genes of clinical isolates of human had significant differences from the environmental isolates and animal isolates. We believe that the strategy and data set in this research will be helpful for battling AMR issue of S. aureus, and adaptable to other pathogenic microbes.202539762552
4675100.9991Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. ABSTRACT: In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L).202133320937
5080110.9991Rapid screening for antibiotic resistance elements on the RNA transcript, protein and enzymatic activity level. BACKGROUND: The emerging threat posed by antibiotic resistance has affected public health systems all over the world. Surveillance of resistant bacteria in clinical settings and identifying them in mixed cultures is of paramount importance and can contribute to the control of their spreading. Culture-independent monitoring approaches are highly desirable, since they yield results much faster than traditional susceptibility testing. However, many rapid molecular methods like PCR only detect the sole presence of a potential resistance gene, do not provide information regarding efficient transcription, expression and functionality and, in addition, cannot assign resistance genes to species level in mixed cultures. METHODS: By using plasmid-encoded TEM β-lactamase mediated ampicillin resistances as a proof of principle system, we (1) developed a fluorescence in situ hybridization-test (FISH) capable to detect the respective mRNAs, (2) implemented an immunofluorescence test to identify the corresponding proteins and (3) compared these two microscopic tests with an established colorimetric nitrocefin assay to assess the enzymatic activity. RESULTS: All three methods proved to be suitable for the testing of antibiotic resistance, but only FISH and immunofluorescence were able to differentiate between susceptible and resistant bacteria on the single cell level and can be combined with simultaneous species identification. CONCLUSIONS: Fluorescence in situ hybridization and immunofluorescence tests are promising techniques in susceptibility testing since they bridge the gap between the slow, but accurate and sound cultural methods and molecular detection methods like PCR with much less functional relevance.201627663856
4786120.9991Novel Antimicrobial Target in Acinetobacter Baumannii. BACKGROUND: Resistance to multiple drugs is one of the biggest challenges in managing infectious diseases. Acinetobacter baumannii is considered a nosocomial infection. According to the multiple roles of the toxin-antitoxin system, this system can be considered an antimicrobial target in the presence of bacteria. With the impact on bacterial toxin, it can be used as a new antibacterial target. The purpose of this study was to determine the mazEF genes as a potent antimicrobial target in A. baumannii clinical isolates. METHODS: The functionality of mazEF genes was evaluated by qPCR in fifteen A. baumannii clinical isolates. Then, the mazE locus was targeted by peptide nucleic acid (PNA). RESULTS: The results showed a significant difference in the mean number of copies of mazF gene in normal and stress conditions. Also, we found that at a concentration of 15 µM of PNA the bacteria were killed and confirmed by culture on LB agar. CONCLUSIONS: This research is the first step in introducing mazEF TA loci as a sensitive target in A. baumannii. However, more studies are needed to test the effectiveness in vivo. In addition, the occurrence and potential for activation of the TA system, mazEF in other pathogenic bacteria should be further investigated.202235536074
4809130.9991Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Insects use a generalized immune response to combat bacterial infection. We have previously noted that natural populations of D. melanogaster harbor substantial genetic variation for antibacterial immunocompetence and that much of this variation can be mapped to genes that are known to play direct roles in immunity. It was not known, however, whether the phenotypic effects of variation in these genes are general across the range of potentially infectious bacteria. To address this question, we have reinfected the same set of D. melanogaster lines with Serratia marcescens, the bacterium used in the previous study, and with three additional bacteria that were isolated from the hemolymph of wild-caught D. melanogaster. Two of the new bacteria, Enterococcus faecalis and Lactococcus lactis, are gram positive. The third, Providencia burhodogranaria, is gram negative like S. marcescens. Drosophila genotypes vary highly significantly in bacterial load sustained after infection with each of the four bacteria, but mean loads are largely uncorrelated across bacteria. We have tested statistical associations between immunity phenotypes and nucleotide polymorphism in 21 candidate immunity genes. We find that molecular variation in some genes, such as Tehao, contributes to phenotypic variation in the suppression of only a subset of the pathogens. Variation in SR-CII and 18-wheeler, however, has effects that are more general. Although markers in SR-CII and 18-wheeler explain >20% of the phenotypic variation in resistance to L. lactis and E. faecalis, respectively, most of the molecular polymorphisms tested explain <10% of the total variance in bacterial load sustained after infection.200616888344
3825140.9991Lack of detectable DNA uptake by transformation of selected recipients in mono-associated rats. BACKGROUND: An important concern revealed in the public discussion of the use of genetically modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to untreatable disease. FINDINGS: Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, did not give rise to any detectable transfer of DNA. CONCLUSION: Although we were unable to detect any transformation events in our experiment, it cannot be ruled out that this could happen in the GI tract. However, since several steps are required before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and antibiotic resistance development in this environment is more in danger by the massive use of antibiotics than the consumption of GM food harbouring antibiotic resistance genes.201020193062
4799150.9991Glycopeptide-resistant enterococci: a decade of experience. Since their first description in 1988, glycopeptide-resistant enterococci (GRE) have emerged as a significant cause of nosocomial infections and colonisations, particularly in Europe and the USA. Two major genetically distinct forms of acquired resistance, designated VanA and VanB, are recognised, although intrinsic resistance occurs in some enterococcal species (VanC) and a third form of acquired resistance (VanD) has been reported recently. The biochemical basis of each resistance mechanism is similar; the resistant enterococci produce modified peptidoglycan precursors that show decreased binding affinity for glycopeptide antibiotics. Although VanA resistance is detected readily in the clinical laboratory, the variable levels of vancomycin resistance associated with the other phenotypes makes detection less reliable. Under-reporting of VanB resistance as a result of a lower detection rate may account, in part, for the difference in the numbers of enterococci displaying VanA and VanB resistance referred to the PHLS Laboratory of Hospital Infection. Since 1987, GRE have been referred from >1100 patients in almost 100 hospitals, but 88% of these isolates displayed the VanA phenotype. It is possible that, in addition to the problems of detection, there may be a real difference in the prevalence of VanA and VanB resistance reflecting different epidemiologies. Our present understanding of the genetic and biochemical basis of these acquired forms of glycopeptide resistance has been gained mainly in the last 5 years. However, these relatively new enterococcal resistances appear still to be evolving; there have now been reports of transferable VanB resistance associated with either large chromosomally borne transposons or plasmids, genetic linkage of glycopeptide resistance and genes conferring high-level resistance to aminoglycoside antibiotics, epidemic strains of glycopeptide-resistant Enterococcus faecium isolated from multiple patients in numerous hospitals, and of glycopeptide dependence (mutant enterococci that actually require these agents for growth). The gene clusters responsible for VanA and VanB resistance are located on transposable elements, and both transposition and plasmid transfer have resulted in the dissemination of these resistance genes into diverse strains of several species of enterococci. Despite extensive research, knowledge of the origins of these resistances remains poor. There is little homology between the resistance genes and DNA from either intrinsically resistant gram-positive genera or from the soil bacteria that produce glycopeptides, which argues against direct transfer to enterococci from these sources. However, recent data suggest a more distant, evolutionary relationship with genes found in glycopeptide-producing bacteria. In Europe, VanA resistance occurs in enterococci isolated in the community, from sewage, animal faeces and raw meat. This reservoir suggests that VanA may not have evolved in hospitals, and its existence has been attributed, controversially, to use of the glycopeptide avoparcin as a growth promoter, especially in pigs and poultry. However, as avoparcin has never been licensed for use in the USA and, to date, VanB resistance has not been confirmed in non-human enterococci, it is clear that the epidemiology of acquired glycopeptide resistance in enterococci is complex, with many factors contributing to its evolution and global dissemination.19989788808
5112160.9991Genome-Based Prediction of Bacterial Antibiotic Resistance. Clinical microbiology has long relied on growing bacteria in culture to determine antimicrobial susceptibility profiles, but the use of whole-genome sequencing for antibiotic susceptibility testing (WGS-AST) is now a powerful alternative. This review discusses the technologies that made this possible and presents results from recent studies to predict resistance based on genome sequences. We examine differences between calling antibiotic resistance profiles by the simple presence or absence of previously known genes and single-nucleotide polymorphisms (SNPs) against approaches that deploy machine learning and statistical models. Often, the limitations to genome-based prediction arise from limitations of accuracy of culture-based AST in addition to an incomplete knowledge of the genetic basis of resistance. However, we need to maintain phenotypic testing even as genome-based prediction becomes more widespread to ensure that the results do not diverge over time. We argue that standardization of WGS-AST by challenge with consistently phenotyped strain sets of defined genetic diversity is necessary to compare the efficacy of methods of prediction of antibiotic resistance based on genome sequences.201930381421
4310170.9991Pathogenicity and drug resistance of animal streptococci responsible for human infections. Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized.202133750514
4343180.9991Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Bacteria pose unique challenges for genome-wide association studies because of strong structuring into distinct strains and substantial linkage disequilibrium across the genome(1,2). Although methods developed for human studies can correct for strain structure(3,4), this risks considerable loss-of-power because genetic differences between strains often contribute substantial phenotypic variability(5). Here, we propose a new method that captures lineage-level associations even when locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, recombination and penetrance confer high power to recover known antimicrobial resistance mechanisms and reveal a candidate association between the outer membrane porin nmpC and cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible and boosts power by detecting lineage-level differences when fine-mapping is intractable.201627572646
4794190.9991Resistance to antibiotics used in dermatological practice. The increased prevalence of bacterial resistance is one of the major problems of medicine today. Antibiotic resistance can be defined as the situation where the minimal inhibitory concentration is greater than the concentration obtainable in vivo. Resistance genes are easily transferred among bacteria, especially bacteria on skin and mucous membranes. In dermatological patients the most important resistance problems are found among staphylococci, Propionibacterium acnes and, to some extent, streptococci. Staphylococcus aureus strains have developed worldwide resistance to penicillin due to betalactamase production in > 90% of cases, and methicillin resistance is now a major problem with resistance levels of > 50% in certain areas of the world. These resistant strains are often multiresistant, and include resistance to erythromycin and tetracycline, with resistance to quinolone developing rapidly. Group A streptococci are still susceptible to penicillin, but increasing problems with erythromycin and tetracycline have been reported. After treatment with both systemic and oral antibiotics, P. acnes develops resistance in more than 50% of cases, and it is estimated that one in four acne patients harbours strains resistant to tetracycline, erythromycin, and clindamycin. To limit the development of antibiotic resistance, it is necessary to establish an antibiotic policy (prescription rules, reimbursement strategy, development of both national and local guidelines, and limitations on non-medical use). Clinicians also need access to rapid diagnostic methods, including resistance testing. This may provide further data for surveillance systems, reporting both antibiotic consumption and resistance levels. The involvement of clinical doctors in teaching and research in this area is probably the most important aspect, along with their involvement in the formulation of national and local guidelines. In the future we may consider it more important to ensure that future patients can be offered antibiotic treatment, rather than focusing on the patient presenting today.19989990406