CAREFUL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
560800.9953Molecular characterization of antibiotic resistance in bacteria from daycare centres in Ile-Ife, Nigeria. BACKGROUND: Antibiotic resistance is an escalating global health issue, with particularly severe implications in low- and middle-income countries (LMICs) such as Nigeria. This study examines antibiotic-resistant bacteria's prevalence and molecular characteristics in daycare centres in Ile-Ife, Nigeria, where high antibiotic use and limited infection control measures present significant challenges. METHODS: Between November 2017 and July 2019, samples were collected from 20 daycare centres, including swabs from fomites and children. Bacterial isolates were identified and assessed for antibiotic susceptibility using standard methods. Molecular techniques, including PCR, were employed to detect resistance genes such as blaSHV, tetA, dfr1 and mecA. RESULTS: The study found high resistance levels among common pathogens, with S. aureus and other staphylococci showing significant resistance to ampicillin and Augmentin and Gram-negative bacteria exhibiting broad resistance patterns. Resistance genes, including blaSHV and mecA, were identified in multiple isolates, indicating the spread of crucial resistance mechanisms. CONCLUSIONS: The results highlight the critical need for improved surveillance, targeted antimicrobial stewardship and enhanced infection control practices in daycare centres to address the growing threat of antibiotic resistance. This research offers valuable insights into resistance dynamics in paediatric settings and supports the development of strategies to manage the spread of resistant bacteria in LMIC contexts.202539737335
182110.9952Emergence and dissemination of bla(KPC-31) and bla(PAC-2) among different species of Enterobacterales in Colombia: a new challenge for the microbiological laboratories. Ceftazidime/avibactam (CZA) is a promising treatment option for infections caused by carbapenem-resistant Enterobacterales (CRE). However, CZA resistance is increasingly reported worldwide, largely due to the emergence of KPC variants and increase of metallo-β-lactamases (MBL). This study describes the mechanisms associated with CZA resistance in circulating Enterobacterales isolates from Colombia, highlighting the challenge this represents for microbiological identification. Between 2021 and 2024, 68 CZA-resistant Enterobacterales isolates were identified by automated methods in seven Colombian cities. Resistance to CZA was subsequently confirmed by broth microdilution and E-test. Carbapenemase production was evaluated using phenotypic tests, such as the mCIM test, Carba NP, lateral flow assay, and qPCR (bla(KPC), bla(NDM), bla(VIM), bla(IMP), and bla(OXA-48)). Whole-genome sequencing was performed on 15 isolates that tested negative for MBL genes. Whole-genome sequencing of these 15 isolates revealed a variety of resistance determinants: six isolates harbored bla(KPC-31), one bla(KPC-33), one bla(KPC-8), five harbored bla(PAC-2), and two co-harbored bla(PAC-2) and bla(KPC-2). Notably, bla(PAC-2) was located on an IncQ plasmid. However, some of these variants were not detected by phenotypic assays, likely due to their low or undetectable carbapenemase activity. CZA resistance in non-MBL producing Enterobacterales in Colombia is primarily mediated by the presence of bla(KPC-31) and emergence of bla(PAC-2). These resistance mechanisms pose significant diagnostic, therapeutic, and epidemiological challenges, as they frequently go undetected by conventional microbiological methods. In this context, enhanced molecular surveillance and improved diagnostic strategies are urgently needed to enable early detection, guide antimicrobial therapy, and support infection control and stewardship efforts.IMPORTANCEAntibiotic resistance is a serious global health threat. Ceftazidime/avibactam (CZA) is a key treatment option for multidrug-resistant (MDR) Enterobacterales often used when other antibiotics fail. However, bacteria are now developing resistance to this drug as well, making infections increasingly difficult to treat. In this study, we examined CZA-resistant bacteria from multiple cities in Colombia and found uncommon resistance genes across several bacterial species. These genes are frequently missed, as they often do not test positive due to the limitations of most routinely used laboratory tests. Importantly, some of these genes can be transferred between bacteria, increasing the likelihood of indiscriminate dissemination in the hospital setting. Therefore, our findings highlight the urgent need for improved diagnostic tools and molecular surveillance. Early detection will help physicians select effective treatments quickly and prevent the wider dissemination of these MDR-resistant bacteria.202541070989
210220.9952Phenotypic and genotypic landscape of antibiotic resistance through One Health approach in Sri Lanka: A systematic review. OBJECTIVES: Antibiotic resistance (ABR) constitutes a significant burden to economies in developing countries. In the 'One-Health' concept, ABR in human, animals, and environment is interconnected. The aim of this study was to critically appraise literature on ABR in all three domains in One Health, within the Sri Lankan geographical context. METHODS: The protocol was registered with PROSPERO and followed PRISMA 2020 guidelines. A comprehensive electronic literature search was conducted in PubMed, Scopus, Web of Science databases and grey literature via Google Scholar. Out of 298 abstracts, 37 articles were selected following screening. A risk of bias assessment was conducted using Joanna Briggs Institute tools. Following blinded data extraction, descriptive data analysis and narrative synthesis were performed. RESULTS: This review included studies published between 2016-2023. Of the included studies, 17 (45.9%) reported data on samples obtained from humans, 9 (24.3%) from animals, and 6 (16.2%) from environmental sources, two studies (5.4%) from humans and animals, one study on animal and environment; whereas two studies including all three domains. ABR of 32 different bacteria (Gram negative⸺17, Gram positive⸺14) was retrieved; E. coli was the most frequently studied bacteria followed by MRSA and ESBL. For E. coli, a median resistance over 50% was reported for sulfamethoxazole (88.8%), trimethoprim (79.1%), ampicillin (60%) and tetracycline (50.3%) with the highest resistance for erythromycin (98%). Of a total of 21 antibiotic-resistance genes in E. coli, the highest genotypic resistance was for tet-A (48.5%). CONCLUSIONS: A comprehensive description of ABR for a total of 32 bacteria, 62 antibiotics and 46 ABR genes is presented. This review discusses the contemporary ABR landscape in Sri Lanka through the One Health lens, highlighting key methodological and empirical research gaps.202539763328
97030.9952First detection of resistance genes and virulence factors in Escherichia coli and Salmonella spp in Togo: the case of imported chicken and frozen by-products. BACKGROUND: The increasing importation of frozen poultry into Togo raises concerns about the microbiological safety and antimicrobial resistance of associated pathogens. Despite the public health risks posed by resistant foodborne bacteria, data on resistance profiles, resistance genes, and virulence factors in imported frozen chickens in Togo remain limited. This study aims to address this gap by characterizing these factors in pathogenic strains isolated from imported poultry. METHODS: A cross-sectional prospective study was undertaken to assess the microbiological quality and resistance profiles of imported poultry products. Samples were collected from seven cold storage facilities located within the Golfe prefecture of the Greater Lomé metropolitan area. In total, 285 poultry meat and cut samples were analyzed following standardized AFNOR microbiological protocols. Isolated Salmonella spp. and Escherichia coli strains underwent antibiotic susceptibility testing using the disk diffusion method, adhering to the guidelines established by the Comité de l'Antibiogramme de la Société Française de Microbiologie (CA-SFM). Furthermore, polymerase chain reaction (PCR) assays were employed to identify genetic determinants of antibiotic resistance and virulence factors in the bacterial isolates. RESULTS: Microbiological analysis revealed a prevalence of Escherichia coli of 32.98%, while Salmonella spp. were detected in 2.46% of the samples. Antibiotic susceptibility testing demonstrated resistance among isolates to several beta-lactams and quinolones. Specifically, resistance to cefoxitin was observed in 14.28% of strains, whereas resistance to cefalexin, cefuroxime, ceftazidime, ceftriaxone, and nalidixic acid was uniformly detected at a prevalence of 28.57%. Among the E. coli isolates, 9.44% exhibited multidrug resistance to both beta-lactams and quinolones. Molecular characterization identified class 1 integrons in 17.6% of isolates, with gene cassettes predominantly harboring aadA1 and dfr1, which encode resistance to streptomycin, spectinomycin, and trimethoprim. Notably, class 2 and class 3 integrons were absent. Additionally, the plasmid-mediated qnrB gene was detected in 5.9% of isolates. The study also documented the emergence of resistance to third-generation cephalosporins (C3G), primarily associated with extended-spectrum beta-lactamase (ESBL) production, as evidenced by the presence of blaCTX (35.3%) and blaTEM (58.8%) genes among ESBL-producing strains. CONCLUSIONS: This study reveals a notable presence of antimicrobial-resistant Escherichia coli and Salmonella in imported frozen poultry in Togo, highlighting significant public health risks. The findings call for improved surveillance and stricter control measures to prevent the spread of resistant pathogens via the food supply. CLINICAL TRIAL NUMBER: Not applicable.202540457192
167240.9951Colonization of extended-spectrum beta-lactamase-producing bacteria in healthy pregnant women and its impact on perinatal care: A cross-sectional study. BackgroundColonization of extended-spectrum beta-lactamase (ESBL)-producing organisms is increasing becoming more frequent not only in hospitalized patients but also in healthy individuals. Although these bacteria are thought to be transmitted to newborns on their way through the birth canal, molecular evidence for this is scarce. In this study, we aimed to survey the current prevalence of resistant bacterial colonization in this area by examining the colonization carriage of this organism before and after delivery.MethodsWe examined the colonization rate of ESBL-producing bacteria in healthy pregnant women, the colonization rate in newborns, and the transmission rate from pregnant women who are carriers of the bacteria to their newborns. We also performed resistance gene and similarity analyses for each strain in pairs of mother-child carriers.ResultsOf 494 pregnant women, 33 carried ESBL-producing bacteria, all of whom were identified as Escherichia coli. The colonization carriage rate among pregnant women was 6.7%. Among newborns, the rate rose from 1.0% immediately after birth to 6.9% at the one-month checkup. Furthermore, of the 13 strains detected among mothers and children, 10 pairs had matching resistance genes.ConclusionsSome ESBL-producing bacterial carriers exist even among healthy pregnant women, and about half of them go on to infect their newborns. However, routes of transmission beyond vertical transmission cannot be ruled out. Therefore, it is important to promote infection control in the healthcare environment and in the families of newborns, as well as antimicrobial stewardship among pregnant women.202540152933
226950.9951Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania.202539833938
93860.9951Molecular Identification of OXA Carbapenemase-Encoding Genes in Acinetobacter baumannii Isolated from Patients in Critical Care in Egypt. Background: The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) in hospitals, particularly within critical care units, has garnered substantial global concern. CRAB commonly arises from the degradation by various ß-lactamases. Objective: We aimed to assess OXA-type carbapenemases in clinical isolates of A. baumannii obtained from an Egyptian tertiary care facility. Patients and Methods: This study examined 25 distinct A. baumannii strains collected from various clinical samples of patients in intensive care unit. Bacterial identification was conducted utilizing both traditional methods and the Vitek2 system. Antibiotic resistance profiles were assessed according to the European Committee on Antimicrobial Susceptibility Testing standards using the Vitek2 Compact automated system. Additionally, multiplex real-time polymerase chain reaction was used to identify the presence of blaOXA23, blaOXA24, blaOXA51, and blaOXA58 carbapenemase genes. Colistin susceptibility was assessed utilizing the broth microdilution method. Results: Carbapenem resistance was identified in 100% of the studied isolates. The blaOXA51 gene was detected in all A. baumannii strains. The gene blaOXA23 was identified in 22 strains (88%), whereas blaOXA24 and blaOXA58 were present in 15 strains (60%). All isolates, except one, co-harbored two or more OXA encoding genes. Colistin resistance was detected in 4 of 25 strains (16%). Conclusion: Our findings demonstrate the widespread distribution of CRAB isolates that co-harbor multiple carbapenemase-encoding genes. Molecular epidemiological studies and the surveillance of antibiotic resistance profiles may aid in identifying and tracing the origins of resistant bacteria, thereby limiting their spread.202539602244
226770.9951MOLECULAR CHARACTERIZATION AND DETECTION OF MULTIDRUGRESISTANT GENE IN BACTERIAL ISOLATES CAUSING LOWER RESPIRATORY TRACT INFECTIONS (LRTI) AMONG HIV/AIDS PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) IN UYO, SOUTH-SOUTH NIGERIA. BACKGROUND: Antibiotic-resistant genes (ARGs) pose a significant challenge in modern medicine, rendering infections increasingly difficult to treat as bacteria acquire mechanisms to resist antibiotics. Addressing ARGs necessitates a multifaceted approach, encompassing surveillance efforts to monitor their presence and the development of strategies aimed at managing and curbing the spread of antibiotic resistance. Hence, this study characterized the genetic determinants of antibiotic resistance among isolates responsible for Lower Respiratory Tract Infections (LRTIs) in People Living with HIV/AIDS (PLWHA) in Uyo. METHODS: Sputum samples were collected from 61 LRTI suspects, with bacterial isolates identified using VITEK-2 technology. Polymerase chain reaction assays were employed to detect resistance genes within the isolates. RESULTS: Results revealed a bacterial etiology in 39.3% of the samples, with a majority (79.2%) originating from St. Luke Hospital, Anua (SLHA), and the remainder (20.8%) from the University of Uyo Teaching Hospital (UUTH). Staphylococcus aureus emerged as the predominant isolate (46.6%), while resistance was notably high against Gentamicin and Sulphamethazole/Trimethoprim. Conversely, Azithromycin, imipenem, clindamycin, erythromycin, and ceftriaxone displayed relatively lower resistance levels across all isolates. Notably, four resistance genes CTX-M, Aac, KPC, and MecA were identified, with CTX-M detected in all multidrug-resistant isolates. This underscores the predominantly community-acquired nature of resistance as conferred by CTX-M. CONCLUSION: In conclusion, this study underscores the critical importance of continued vigilance and proactive measures in combating antibiotic resistance, particularly within vulnerable populations such as PLWHA. By elucidating the genetic mechanisms underlying antibiotic resistance, informed targeted interventions can be mitigated to curb threats posed by multidrug-resistant bacteria in clinical settings.202440385712
182780.9950Multinational comparison of the detection of extended-spectrum beta-lactamase genes in healthy resident feces. The spread of antimicrobial-resistant bacteria, especially in developing countries, is a critical healthcare issue. Among these, extended-spectrum beta-lactamase (ESBL)-producing bacteria are particularly concerning due to their resistance to third- and fourth-generation cephalosporins. Traditional methods for assessing bacterial resistance involve culturing bacteria on selective media from fecal samples, which may lead to selection bias. Alternatively, real-time PCR allows for detecting resistance genes directly from fecal DNA, providing a broader view of resistant bacteria. In this study, we evaluated the utility of a real-time PCR assay targeting ESBL-producing genes as a comprehensive detection method for ESBL-producing resistant bacteria in fecal samples. Additionally, we conducted a multinational comparative analysis of the colonization status of residents using this approach. The study analyzed ESBL genes in fecal samples from 161 residents in four countries: Ecuador, Ghana, Vietnam, and Japan. Samples from Ecuador, Ghana, and Vietnam, where ESBL carriage was notably high, revealed gene variations by country, with blaTEM genes being most common except in Ghana, where blaSHV genes predominated. These variations suggest that different bacterial hosts carry ESBL genes across countries. Quantitative PCR results further highlight that blaTEM is the most abundant ESBL gene. Although gene presence does not confirm antibiotic resistance, these findings underline significant ESBL carriage in low- and middle-income countries. The study emphasizes that gene detection in fecal samples is valuable for understanding resistant bacteria spread in communities.IMPORTANCEThe rise of antimicrobial-resistant bacteria, particularly extended-spectrum beta-lactamase (ESBL)-producing strains, poses a serious threat to healthcare in developing countries. This study utilized real-time PCR to detect ESBL genes directly from fecal DNA of 161 participants across four countries, offering a comprehensive analysis without the biases of traditional culture-based methods. High ESBL gene carriage rates were found in Ecuador, Ghana, and Vietnam, with regional differences in gene prevalence: blaTEM dominated in most countries, while blaSHV was most frequent in Ghana. These results highlight the widespread community-level dissemination of ESBL genes in low- and middle-income countries, underscoring the importance of using gene detection as a tool for assessing the spread of resistant bacteria.202540304472
182990.9950Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum β-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying bla(NDM-1) observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple bla(NDM) carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), bla(VIM-5) or bla(DIM-1) showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana.202235296353
2722100.9950Multidrug resistance assessment of indoor air in Portuguese long-term and acute healthcare settings. BACKGROUND: Knowledge about air as a pool of pathogens and multidrug resistance (MDR) in healthcare units apart from hospitals is scarce. AIM: To investigate these features in a Portuguese long-term healthcare unit (LTHU) and a central hospital (CH). METHODS: Air samples were collected and their microbial load (bacteria and fungi) determined. Bacterial isolates were randomly selected for further characterization, particularly identification by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, antimicrobial susceptibility testing, and polymerase chain reaction screening of extended-spectrum β-lactamases, carbapenemase genes and mecA gene, with RAPD profile assessment of positive results of the latter. FINDINGS: A total of 192 samples were collected (LTHU: 86; CH: 106). LTHU showed a statistically significantly higher bacterial load. CH bacteria and fungi loads in inpatient sites were statistically significantly lower than in outpatients or non-patient sites. A total of 164 bacterial isolates were identified (MALDI-TOF: 78; presumptively: 86), the majority belonging to Staphylococcus genus (LTHU: 42; CH: 57). The highest antimicrobial resistance rate was to erythromycin and vancomycin the least, in both settings. Eighteen isolates (11%) were classified as MDR (LTHU: 9; CH: 9), with 7 MDR Staphylococcus isolates (LTHU: 4; CH: 3) presenting mecA. Nine non-MDR Staphylococcus (LTHU: 5; CH: 4) also presented mecA. CONCLUSION: The current study highlights that healthcare unit indoor air can be an important pool of MDR pathogens and antimicrobial resistance genes. Also, LTHUs appear to have poorer air quality than hospitals, as well as supportive areas compared to curative care areas. This may suggest possible yet unknown routes of infection that need to be explored.202539983920
904110.9950High prevalence of contamination of sink drains with carbapenemase-producing Enterobacteriaceae in 4 intensive care units apart from any epidemic context. We report a high prevalence (28%) of sink drains contaminated with carbapenemase-producing Enterobacteriaceae (CPE) in 4 intensive care units with a history of CPE carriage in hospitalized patients within the previous 5 years, but apart from any current epidemic context. Carbapenemase genes, particularly bla(VIM) and bla(NDM), were identified by polymerase chain reaction in sink drains in which no CPE was detected, but very few data are available in the literature concerning their presence in sink drains.202031495643
2104120.9950A systematic review and meta-analysis on antibiotic resistance genes in Ghana. BACKGROUND: Addressing antimicrobial resistance (AMR) poses a complex challenge, primarily because of the limited understanding of bacterial antibiotic resistance genes (ARGs) and the spread of these genes across different domains. To bridge this knowledge gap in Ghana, we undertook a comprehensive systematic review and meta-analysis to quantify and estimate the prevalence of circulating ARGs in bacteria isolated from human, animal, and environmental sources. METHODS: A thorough literature search was conducted across three major databases-Web of Science, PubMed, and Scopus-to retrieve all relevant articles related to ARGs in Ghana from the inception of the databases to February 25, 2024. A risk-of-bias evaluation was performed using the Newcastle-Ottawa Scale (NOS), and the data analysis involved descriptive statistics and proportional meta-analysis. RESULTS: Of the 371 articles initially obtained, 38 met the inclusion criteria. These studies adequately covered Ghana geographically. The most prevalent ESBL gene identified was bla(CTX-M), with a prevalence of 31.6% (95% CI: 17.6-45.7), followed by bla(TEM) (19.5% [95% CI: 9.7-29.3]), and bla(SHV) (3.5% [95% CI: 0.3-6.6]). The pooled prevalence of carbapenemase genes ranged from 17.2% (95% CI: 6.9-27.6) for bla(NDM) to 10.3% (95% CI: 1.9-18.7) for bla(OXA). Additionally, other ARGs, including sul1, qnrS, gyrA, erm(B), and mecA, were detected, with prevalence ranging from 3.9% (95% CI: 0.0-8.5) to 16.4% (95% CI: 3.1-29.8). Several ARGs were shared across human, animal, and environmental sources. CONCLUSION: This review revealed that bacteria obtained from human, animal, and environmental samples in Ghana shared genes associated with AMR. This finding provides evidence on the interconnection of AMR across these three domains. Horizontal gene transfer, which enables the dissemination of ARGs between genetically diverse bacteria, can occur, necessitating a multidisciplinary approach to addressing antimicrobial resistance in Ghana.202540075357
2251130.9950Direct-PCR from rectal swabs and environmental reservoirs: A fast and efficient alternative to detect bla(OXA-48) carbapenemase genes in an Enterobacter cloacae outbreak setting. Carbapenemase-producing bacteria are a risk factor in clinical settings worldwide. The aim of the study was to accelerate the time to results during an outbreak situation with bla(OXA-48)-positive Enterobacter cloacae by using a real-time multiplex quantitative PCR (qPCR) directly on rectal swab specimens and on wastewater samples to detect carbapenemase-producing bacteria. Thus, we analyzed 681 rectal swabs and 947 environmental samples during a five-month period by qPCR and compared the results to culture screening. The qPCR showed a sensitivity of 100% by testing directly from rectal swabs and was in ten cases more sensitive than the culture-based methods. Environmental screening for bla(OXA-48)-carbapenemase genes by qPCR revealed reservoirs of different carbapenemase genes that are potential sources of transmission and might lead to new outbreaks. The rapid identification of patients colonized with those isolates and screening of the hospital environment is essential for earlier patient treatment and eliminating potential sources of nosocomial infections.202234343553
2273140.9950Aircraft lavatory wastewater surveillance for movement of antimicrobial resistance genes: a proof-of-concept study. Long-haul flight aircraft wastewater may serve as a representative microbial footprint, often of mixed country origin, offering valuable insight into the movement of pathogens and antimicrobial resistance (AMR) on a global scale. Herein, we present a proof-of-concept for aircraft-based surveillance of AMR by investigating lavatory wastewater samples from 44 repatriation flights to Australia departing from nine countries. Profiles of pathogens including ESKAPE pathogens (Salmonella spp., Mycobacterium spp., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) and antibiotic resistance genes (ARGs) (aph(3')-IIIa, bla(NDM-1), bla(CTX_M-1), bla(KPC), ermB, qnrS, sul1, tetM, and vanA) were investigated along with traditional fecal indicator bacteria (Escherichia coli and Enterococcus spp.) and fecal/urine marker genes (Bacteroides HF183, Carjivirus, human polyomavirus, and a cryptic plasmid pBI143) using quantitative PCR (qPCR). Two fecal indicator bacteria (FIB) and four human fecal/urine marker genes were detected in all aircraft wastewater samples. Detection rates for ESKAPE pathogens ranged from 6.8% (S. aureus) to 84.1% (K. pneumoniae). Of all ARG targets, aph(3')-IIIa, ermB, qnrS, sul1, and tetM were detected in all wastewater samples, whereas bla(KPC) and vanA were not detected in any of the samples. Results reflected geographic differences in ARG abundance originating from departure countries/continents and suggested a potential risk of importing ARGs that might be rare in local wastewater systems. The loss of nucleic acid targets was less than 10% over a 24 h incubation in the presence of disinfectants, suggesting that nucleic acids are resilient enough to persist in aircraft wastewater over the maximum duration of a flight.IMPORTANCEIn the context of international connectedness, aircraft-based wastewater surveillance should be viewed as a beyond-national tool to enhance global AMR management and foster international cooperation.202540434126
949150.9949Molecular and clinical insights into extended-spectrum β-lactamase genes of Klebsiella pneumoniae isolated from neonatal sepsis in Ethiopia. BACKGROUND: Klebsiella bacterial strains harboring Extended-Spectrum Beta-Lactamase (ESBL) enzymes are the primary culprits behind neonatal sepsis globally. These strains significantly impact clinical outcomes due to their multi-drug resistance patterns in local healthcare settings. In response to this spiraling threat, we studied the prevalence and clinical implications of ESBL-encoding genes in neonates hospitalized with confirmed sepsis. METHODS: A correlational study was conducted on 51 neonates diagnosed with sepsis caused by ESBL-positive Klebsiella pneumoniae at Jimma Medical Center spanning from May 2022 to July 2023. Antimicrobial resistance profiles of the bacterial isolates were determined using the Kirby-Bauer diffusion test, while multiplex polymerase chain reaction (mPCR) techniques were employed to identify resistance genes. The correlation between resistance genes and treatment outcomes was analyzed using the phi coefficient (φ) with a significance level below 0.05. The data management was executed through the utilization of WHONET and STATA software platforms. RESULTS: The sample consisted of 26 (50.9%) male and the remaining 25 (49.1%) female neonates, with diverse clinical characteristics. All 51 Klebsiella pneumoniae isolates were 100% resistant to trimethoprim/sulfamethoxazole and ceftriaxone, but showed varying resistance profiles ranging from 30.8% to meropenem to 94.2% to ceftazidime. Notably, all isolates demonstrated multidrug resistance, with 23% of cases showing resistance to seven different antimicrobial classes. The most prevalent resistance genes identified were bla(CTX-M) (96.1%), bla(TEM) (94.1%), and bla(SHV) (88.2%). The majority of isolates (94.1%) carried at least two resistance genes, such as bla(TEM) and bla(CTX) (94.1%), bla(TEM) and bla(SHV) (86.2%), and bla(CTX) and bla(SHV) (86.2%). Notably, 84.3% of the bacteria harbored the trio of bla(TEM), bla(CTX), and bla(SHV) resistance genes, and only the presence of bla(SHV) in monogenic (φ = 0.4, P = 0.01) or the trio of bla(TEM), bla(CTX), and bla(SHV) genes (φ = 0.3, P = 0.02) showed positive correlation with neonatal mortality. CONCLUSION: We observed a significant prevalence of multidrug-resistant Klebsiella pneumoniae strains among neonates. Moreover, ESBL-resistance genes were widespread, with the blaSHV gene showing a correlation with increased neonatal mortality. These findings emphasize the urgent need for enhanced infection prevention measures, robust antimicrobial resistance surveillance, innovative treatment strategies, antibiotic stewardship initiatives, further research into resistance transfer mechanisms as well as hierarchical predictors of neonatal mortality. CLINICAL TRIAL NUMBER: Not applicable.202439695444
1580160.9949Polyclonal Spread of Fosfomycin Resistance among Carbapenemase-Producing Members of the Enterobacterales in the Czech Republic. Fosfomycin (FOS) has been recently reintroduced into clinical practice, but its effectiveness against multidrug-resistant (MDR) Enterobacterales is reduced due to the emergence of FOS resistance. The copresence of carbapenemases and FOS resistance could drastically limit antibiotic treatment. The aims of this study were (i) to investigate fosfomycin susceptibility profiles among carbapenem-resistant Enterobacterales (CRE) in the Czech Republic, (ii) to characterize the genetic environment of fosA genes among the collection, and (iii) to evaluate the presence of amino acid mutations in proteins involved in FOS resistance mechanisms. During the period from December 2018 to February 2022, 293 CRE isolates were collected from different hospitals in the Czech Republic. FOS MICs were assessed by the agar dilution method (ADM), FosA and FosC2 production was detected by the sodium phosphonoformate (PPF) test, and the presence of fosA-like genes was confirmed by PCR. Whole-genome sequencing was conducted with an Illumina NovaSeq 6000 system on selected strains, and the effect of point mutations in the FOS pathway was predicted using PROVEAN. Of these strains, 29% showed low susceptibility to fosfomycin (MIC, ≥16 μg/mL) by ADM. An NDM-producing Escherichia coli sequence type 648 (ST648) strain harbored a fosA10 gene on an IncK plasmid, while a VIM-producing Citrobacter freundii ST673 strain harbored a new fosA7 variant, designated fosA7.9. Analysis of mutations in the FOS pathway revealed several deleterious mutations occurring in GlpT, UhpT, UhpC, CyaA, and GlpR. Results regarding single substitutions in amino acid sequences highlighted a relationship between ST and specific mutations and an enhanced predisposition for certain STs to develop resistance. This study highlights the occurrence of several FOS resistance mechanisms in different clones spreading in the Czech Republic. IMPORTANCE Antimicrobial resistance (AMR) currently represents a concern for human health, and the reintroduction of antibiotics such as fosfomycin into clinical practice can provide further option in treatment of multidrug-resistant (MDR) bacterial infections. However, there is a global increase of fosfomycin-resistant bacteria, reducing its effectiveness. Considering this increase, it is crucial to monitor the spread of fosfomycin resistance in MDR bacteria in clinical settings and to investigate the resistance mechanism at the molecular level. Our study reports a large variety of fosfomycin resistance mechanisms among carbapenemase-producing Enterobacterales (CRE) in the Czech Republic. Our study summarizes the main achievements of our research on the use of molecular technologies, such as next-generation sequencing (NGS), to describe the heterogeneous mechanisms that reduce fosfomycin effectiveness in CRE. The results suggest that a program for widespread monitoring of fosfomycin resistance and epidemiology fosfomycin-resistant organisms can aide timely implementation of countermeasures to maintain the effectiveness of fosfomycin.202337098942
1749170.9949The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.202438419967
842180.9949Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities.202541131447
2170190.9949Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011-2013. BACKGROUND: Emerging antibiotic resistance amongst clinically significant bacteria is a public health issue of increasing significance worldwide, but it is relatively uncharacterized in Cambodia. In this study we performed standard bacterial cultures on samples from wounds at a Non-Governmental-Organization (NGO) Hospital in Phnom Penh, Cambodia. Testing was performed to elucidate pathogenic bacteria causing wound infections and the antibiotic resistance profiles of bacterial isolates. All testing was performed at the Naval Medical Research Unit, No.2 (NAMRU-2) main laboratory in Phnom Penh, Cambodia. METHODS: Between 2011-2013, a total of 251 specimens were collected from patients at the NGO hospital and analyzed for bacterial infection by standard bacterial cultures techniques. Specimens were all from wounds and anonymous. No specific clinical information accompanied the submitted specimens. Antibiotic susceptibility testing, and phenotypic testing for extended-spectrum beta-lactamase (ESBL) were performed and reported based on CLSI guidelines. Further genetic testing for CTX-M, TEM and SHV ESBLs was accomplished using PCR. RESULTS: One-hundred and seventy-six specimens were positive following bacterial culture (70 %). Staphlycoccus aureus was the most frequently isolated bacteria. Antibiotic drug resistance testing revealed that 52.5 % of Staphlycoccus aureus isolates were oxacillin resistant. For Escherichia coli isolates, 63.9 % were ciprofloxacin and levofloxacin resistant and 96 % were ESBL producers. Resistance to meropenem and imipenem was observed in one of three Acinetobacter spp isolates. CONCLUSIONS: This study is the first of its kind detailing the antibiotic resistance profiles of pathogenic bacteria causing wound infections at a single surgical hospital in Cambodia. The reported findings of this study demonstrate significant antibiotic resistance in bacteria from injured patients and should serve to guide treatment modalities in Cambodia.201528883936