CAPTURED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
356300.9951Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10(-5) to 10(-7). Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer.201425653641
264510.9951High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. A total of 116 Escherichia coli isolates from cecal contents of 81 indigenous wild birds in Korea were tested for antimicrobial susceptibility. Seventy-one isolates from sparrows (Passer montanus) and one isolate from doves (Columba livia) were resistant to three antimicrobials, including streptomycin, sulfonamide, and tetracycline (SSuT). PCR and subsequent sequence analysis revealed the SSuT gene cluster region (approximately 13 kb) harboring genes encoding resistance to streptomycin (strA and strB), sulfonamide (sul2), and tetracycline (tetB, tetC, tetD, and tetR). In particular, tetracycline resistance genes were located on the transposon Tn10-like element. The SSuT element-harboring E. coli can be an important source of the transmission of antimicrobial resistance to other pathogenic bacteria. Therefore, strict sanitary measures in human and animal environments are necessary to prevent the spread of resistant bacteria through fecal residues of wild birds.202133487603
355220.9949Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. In this study, the prevalence and types of transferable antibiotic resistance plasmids in piggery manure were investigated. Samples from manure storage tanks of 15 farms in Germany were analysed, representing diverse sizes of herds, meat or piglet production. Antibiotic resistance plasmids from manure bacteria were captured in gfp-tagged rifampicin-resistant Escherichia coli and characterized. The occurrence of plasmid types was also detected in total community DNA by PCR and hybridization. A total of 228 transconjugants were captured from 15 manures using selective media supplemented with amoxicillin, sulfadiazine or tetracycline. The restriction patterns of 81 plasmids representing different antibiotic resistance patterns or different samples clustered into seven groups. Replicon probing revealed that 28 of the plasmids belonged to IncN, one to IncW, 13 to IncP-1 and 19 to the recently discovered pHHV216-like plasmids. The amoxicillin resistance gene bla-TEM was detected on 44 plasmids, and sulphonamide resistance genes sul1, sul2 and/or sul3 on 68 plasmids. Hybridization of replicon-specific sequences amplified from community DNA revealed that IncP-1 and pHHV216-like plasmids were detected in all manures, while IncN and IncW ones were less frequent. This study showed that 'field-scale' piggery manure is a reservoir of broad-host range plasmids conferring multiple antibiotic resistance genes.200818557938
289130.9948Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Mediterranean herring gulls (Larus cachinnans) were investigated as a possible reservoir of antibiotic resistant bacteria and of cassette-borne resistance genes located in class 1 integrons. Two hundred and fourteen isolates of the family Enterobacteriaceae were collected from cloacal swabs of 92 chicks captured in a natural reserve in the North East of Italy. They showed high percentages of resistance to ampicillin and streptomycin. High percentages of resistance to trimethoprim/sulfamethoxazole were found in Proteus and Citrobacter and to chloramphenicol in Proteus. Twenty-two (10%) isolates carried the intI1 gene. Molecular characterization of the integron variable regions showed a great diversity, with the presence of 11 different cassette arrays and of one integron without integrated cassettes. The dfrA1-aadA1a and aadB-aadA2 cassette arrays were the most frequently detected. Also the estX cassette, alone or in combination with other cassettes, was detected in many isolates. From this study it is concluded that the enteric flora of Mediterranean herring gulls may act as a reservoir of resistant bacteria and of resistance genes. Due to their feeding habits and their ability to fly over long distances, these free-living birds may facilitate the circulation of resistant strains between waste-handling facilities, crops, waters, and urban areas.200818476779
201240.9948Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 isolates). The second was resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (the AmKmStSuTe phenotype; 44.6% of all isolates), most commonly of the DT193 phage type (77 of 165 isolates), which represents an unusual resistance pattern for DT193 isolates. We analyzed 64 representative isolates by amplified fragment length polymorphism (AFLP) analysis, which revealed DNA fingerprint similarities that correlated with both resistance patterns and phage types. To investigate the genetic basis for resistance among DT193 isolates, we characterized three AmKmStSuTe pentaresistant strains and one hexaresistant strain, which also expressed resistance to gentamicin (Gm phenotype), all of which had similar DNA fingerprints and all of which were collected during the same sampling. We found that the genes encoding the pentaresistance pattern were different from those from isolates of the DT104 phage type. We also found that all strains encoded all of their resistance genes on plasmids, unlike the chromosomally encoded genes of DT104 isolates, which could be transferred to Escherichia coli via conjugation, but that the plasmid compositions varied among the isolates. Two strains (strains UT08 and UT12) had a single, identical plasmid carrying bla(TEM) (which encodes ampicillin resistance), aphA1-Iab (which encodes kanamycin resistance), strA and strB (which encode streptomycin resistance), class B tetA (which encodes tetracycline resistance), and an unidentified sulfamethoxazole resistance allele. The third pentaresistant strain (strain UT20) was capable of transferring by conjugation two distinct resistance patterns, AmKmStSuTe and KmStSuTe, but the genes were carried on plasmids with slightly different restriction patterns (differing by a single band of 15 kb). The hexaresistant strain (strain UT30) had the same plasmid as strains UT08 and UT12, but it also carried a second plasmid that conferred the AmKmStSuGm phenotype. The second plasmid harbored the gentamicin resistance methylase (grm), which has not previously been reported in food-borne pathogenic bacteria. It also carried the sul1 gene for sulfamethoxazole resistance and a 1-kb class I integron bearing aadA for streptomycin resistance. We also characterized isolates of the DT104 phage type. We found a number of isolates that expressed resistance only to streptomycin and sulfamethoxazole (the StSu phenotype; 8.3% of serovar Typhimurium var. Copenhagen strains) but that had AFLP DNA fingerprints similar or identical to those of strains with genes encoding the typical AmCmStSuTe pentaresistance phenotype of DT104. These atypical StSu DT104 isolates were predominantly cultured from environmental samples and were found to carry only one class I integron of 1.0 kb, in contrast to the typical two integrons (InC and InD) of 1.0 and 1.2 kb, respectively, of the pentaresistant DT104 isolates. Our findings show the widespread existence of multidrug-resistant Salmonella strains and the diversity of multidrug resistance among epidemiologically related strains. The presence of resistance genes on conjugative plasmids and duplicate genes on multiple plasmids could have implications for the spread of resistance factors and for the stability of multidrug resistance among Salmonella serovar Typhimurium isolates.200212149335
208450.9946Characterization of Four Multidrug Resistance Plasmids Captured from the Sediments of an Urban Coastal Wetland. Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (bla(WDC-1)), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic bla(CTX-M-55) extended-spectrum β-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health.201729067005
303960.9946Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. We report the linkage of the strA-strB streptomycin-resistance genes with Class 1 integron sequences on pSTR1, a 75-kb multiple antibiotic-resistance plasmid from Shigella flexneri. strA-strB had previously been detected only within Tn 5393, a Tn 3-family transposon, and on small nonconjugative broad-host-range plasmids such as RSF1010. The geographic range of Tn 5393 was also extended to Pseudomonas spp. isolated from apple trees in New Zealand and soil in the USA. Comparative sequence analyses indicated that strA-strB from Tn 5393 and nonconjugative plasmids constitute distinct recent lineages with strA-strB from pSTR1 intermediate between the other two. The carriage of strA-strB within an integron, a transposon, and on broad-host-range plasmids has facilitated the world-wide dissemination of this determinant among at least 21 bacterial genera.200212029529
206570.9945Exogenous plasmid capture to characterize tetracycline-resistance plasmids in sprouts obtained from retail in Germany. This study aimed to characterize antibiotic-resistance plasmids present in microorganisms from sprout samples using exogenous plasmid capture. Fresh mung bean sprouts were predominantly colonized by bacteria from the phyla Proteobacteria and Bacteroidetes. To capture plasmids, a plasmid-free Escherichia (E.) coli CV601 strain, containing a green fluorescent protein gene for selection, was used as the recipient strain in exogenous plasmid capture experiments. Transconjugants were selected on media containing cefotaxime or tetracycline antibiotics. While no cefotaxime-resistant transconjugants were obtained, 40 tetracycline-resistant isolates were obtained and sequenced by Illumina NextSeq short read and Nanopore MinION long read sequencing. Sequences were assembled using Unicycler hybrid assembly. Most of the captured long plasmids carried either the tet(A) or tet(D) resistance gene, belonged to the IncFI or IncFII replicon types, and were predicted as conjugative. While the smaller plasmids contained the tet(A) tetracycline resistance gene as well as additional quinolone (qnrS1), sulfonamide (sul1) and trimethoprim (dfrA1) resistance genes, the larger plasmids only contained the tet(D) resistance gene. An exception was the largest 192 kbp plasmid isolated, which contained the tet(D), as well as sulfonamide (sul1) and streptomycin (aadA1) resistance genes. The smaller plasmid was isolated from different sprout samples more often and showed a 100% identity in size (71,155 bp), while the 180 kbp plasmids showed some smaller or larger differences (in size between 157,683 to 192,360 bp). This suggested that the plasmids obtained from the similar sprout production batches could be clonally related. Nanopore MinION based 16S metagenomics showed the presence of Enterobacter (En.) cloacae, En. ludwigii, En. kobei, Citrobacter (C.) werkmanii, C. freundii, Klebsiella (K.) oxytoca and K. pneumonia, which have previously been isolated from fresh produce in Germany. These bacteria may harbor antibiotic resistance genes on plasmids that could potentially be transferred to similar genera. This study demonstrated that bacteria present in sprouts may act as the donors of antibiotic resistance plasmids which can transfer resistance to other bacteria on this product via conjugation.202540012786
289280.9945Characterization and transferability of class 1 integrons in commensal bacteria isolated from farm and nonfarm environments. This study assessed the distribution of class 1 integrons in commensal bacteria isolated from agricultural and nonfarm environments, and the transferability of class 1 integrons to pathogenic bacteria. A total of 26 class 1 integron-positive isolates were detected in fecal samples from cattle operations and a city park, water samples from a beef ranch and city lakes, and soil, feed (unused), manure, and compost samples from a dairy farm. Antimicrobial susceptibility testing of class 1 integron-positive Enterobacteriaceae isolates from city locations displayed multi-resistance to 12-13 out of the 22 antibiotics tested, whereas class 1 integron-positive Enterobacteriaceae isolates from cattle operations only displayed tetracycline resistance. Most class 1 integrons had one gene cassette belonging to the aadA family that confers resistance to streptomycin and spectinomycin. One isolate from a dog fecal sample collected from a city dog park transferred its class 1 integron to a strain of Escherichia coli O157:H7 at a frequency of 10(-7) transconjugants/donor by in vitro filter mating experiments under the stated laboratory conditions. Due to the numerous factors that may affect the transferability testing, further investigation using different methodologies may be helpful to reveal the transferability of the integrons from other isolates. The presence of class 1 integrons among diverse commensal bacteria from agricultural and nonfarm environments strengthens the possible role of environmental commensals in serving as reservoirs of antibiotic resistance genes.201020704511
201790.9945Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. OBJECTIVES: To investigate the presence and distribution of integron-carrying bacteria from a slaughterhouse wastewater treatment plant (WWTP). METHODS: Enterobacteriaceae and aeromonads were isolated at different stages of the wastewater treatment process and screened for the presence of integrase genes by dot-blot hybridization. Integrase-positive strains were characterized in terms of phylogenetic affiliation, genetic content of integrons and antimicrobial resistance profiles. Plasmid location of some integrons was established by Southern-blot hybridization. Strains containing integron-carrying plasmids were selected for mating experiments. RESULTS: Integrase genes were present in all samples, including the final effluent. The global prevalence was determined to be 35%, higher than in other aquatic environments. Forty-two integrase-positive isolates were further characterized. Nine distinct cassette arrays were found, containing genes encoding resistance to beta-lactams (bla(OXA-30)), aminoglycosides (aadA1, aadA2, aadA13, aadB), streptothricin (sat1, sat2), trimethoprim (dfrA1, dfrA12), a putative esterase (estX) and a protein with unknown function (orfF). Gene cassette arrays aadA1, dfrAI-aadA1 and estX-sat2-aadA1 were common to aeromonads and Enterobacteriaceae. The class 2 integron containing an estX-sat2-aadA1 cassette array was detected for the first time in Aeromonas sp. Nearly 12% (5 out of 43) of intI genes were located in plasmids. intI genes from isolates MM.1.3 and MM.1.5 were successfully conjugated into Escherichia coli at frequencies of 3.79 x 10(-5) and 5.46 x 10(-5) per recipient cell, respectively. CONCLUSIONS: Our data support the hypothesis that WWTPs constitute a potential hot spot for horizontal gene transfer and for selection of antimicrobial resistance genes among aquatic bacteria. Moreover, water discharges represent a possible risk for dissemination of undesirable genetic traits.200717913715
3561100.9944Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. OBJECTIVES: Antibiotic-polluted environments may function as reservoirs for novel resistance plasmids not yet encountered in pathogens. The aims of this study were to assess the potential of resistance transfer between bacteria from such environments and Escherichia coli, and to characterize the conjugative elements involved. METHODS: Sediment samples from Kazipally lake and Asanikunta tank, two Indian lakes with a history of severe pollution with fluoroquinolones, were investigated. Proportions of resistant bacteria were determined by selective cultivation, while horizontal gene transfer was studied using a GFP-tagged E. coli as recipient. Retrieved transconjugants were tested for susceptibility by Etest(®) and captured conjugative resistance elements were characterized by WGS. RESULTS: The polluted lakes harboured considerably higher proportions of ciprofloxacin-resistant and sulfamethoxazole-resistant bacteria than did other Indian and Swedish lakes included for comparison (52% versus 2% and 60% versus 7%, respectively). Resistance plasmids were captured from Kazipally lake, but not from any of the other lakes; in the case of Asanikunta tank because of high sediment toxicity. Eight unique IncA/C and IncN resistance plasmids were identified among 11 sequenced transconjugants. Five plasmids were fully assembled, and four of these carried the quinolone resistance gene qnrVC1, which has previously only been found on chromosomes. Acquired resistance genes, in the majority of cases associated with class 1 integrons, could be linked to decreased susceptibility to several different classes of antibiotics. CONCLUSIONS: Our study shows that environments heavily polluted with antibiotics contain novel multiresistance plasmids transferrable to E. coli.201526124213
5857110.9944Prevalence of tetracycline resistance genes in Greek seawater habitats. The presence of selected tetracycline resistance (TcR) genes was studied in different Greek seawater habitats, originated from wastewater treatment facilities, fishfarm, and coastal environments. The methods employed included assessment of the presence of twelve gene clusters by PCR, followed by hybridization with specific probes, in habitat extracted DNA, Tc(R) bacteria, and exogenous isolated plasmids conferring TcR. The direct DNA-based analysis showed that tet(A) and tet(K) genes were detected in all habitats, whilst tet(C) and tet(E) were present in fishfarm and wastewater effluent samples and tet(M) was detected in fish-farm and coastal samples. Resistance genes tet(h), tet(C), tet(K), and tet(M) were detected in 60 of the 89 isolates screened. These isolates were identified by fatty acid methyl ester analysis (FAME) as Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus, and Staphylococcus strains. The presence of the TcR genes in 15% of the bacterial isolates coincided with the presence of IncP plasmids. A habitat-specific dissemination of IncP alpha plasmids in wastewater effluent isolates and of IncP beta plasmids in fishfarm isolates was observed. Exogenous isolation demonstrated the presence of plasmids harbouring Tc(R) genes in all the habitats tested. Plasmids were shown to carry tet(h), tet(C), tet(E), and tet(K) genes. It is concluded that TcR genes are widespread in the seawater habitats studied and often occur on broad host range plasmids that seem to be well disseminated in the bacterial communities.200819107391
3037120.9944Faecal Escherichia coli mediating transferable multi-antibiotic resistance and undesirable extra-chromosomal genes. A conjugative R-plasmid PE004, Inc F11, conferring resistance to ampicillin, tetracycline, streptomycin, kanamycin and trimethoprim was obtained from an E. coli serotype 026 isolate from the stool of a child with acute diarrhoea. The R-plasmid PE004 also co-transfers an enteropathogenicity antigen without the production of enterotoxins or manifestation of invasiveness. It is not yet known whether this transferable antigen mediates enterocyte damage with consequent diarrhoea. The R-plasmid was of molecular weight 2.4 megadaltons (3.7 kilobase) with a transfer frequency of 6 x 10(-4) cfu/ml E. coli J53-1. The uncontrolled mediation with antibiotics in cases of acute diarrhoea could select gut bacteria not only possessing R-plasmids conferring resistance to several antibiotics but with associated undesirable extrachromosomal genes.19862435237
3558130.9944Identification of a globally distributed clinical streptomycin-resistance plasmid and other resistance determinants in a coastal bay of China. AIMS: To study streptomycin-resistant bacteria isolated from Jiaozhou Bay and their molecular determinants of resistance. METHODS AND RESULTS: Twenty-seven tetracycline-resistant and 49 chloramphenicol-resistant bacterial isolates from surface seawater of Jiaozhou Bay were selected for investigation. More than 88% of these isolates were resistant to streptomycin. Half of the streptomycin-resistant bacteria harboured the strA-strB gene pair, and six isolates carried Tn5393-like transposons by PCR detection. The p9123-related plasmids containing the sul2-strA-strB gene cluster were characterized in two environmental Escherichia coli isolates. Transposon Tn5393 was first identified on a Klebsiella pneumoniae plasmid, which also carried Tn1721, estP and umu genes responsible for antimicrobial and insecticide resistance. CONCLUSIONS: Coresistance to streptomycin and tetracycline or chloramphenicol was found with high frequency. p9123-related plasmid and Tn5393 transposon may contribute to the wide distribution and spread of the strA-strB gene pair in Jiaozhou Bay. The detection of streptomycin-resistance plasmid pQ1-1 from Jiaozhou Bay seawater bacteria and human bacterial pathogens from USA indicates its global dissemination and transmission, across different components of the microbiota on earth. SIGNIFICANCE AND IMPACT OF THE STUDY: Streptomycin resistance can be recognized as an important bioindicator of environmental quality, owing to its association with anthropogenic pollution and the multidrug-resistant microbiota.201121054449
1775140.9944The IncC and IncX1 resistance plasmids present in multi-drug resistant Escherichia coli strains isolated from poultry manure in Poland. The study describes the whole-genome sequencing of two antibiotic-resistant representative Escherichia coli strains, isolated from poultry manure in 2020. The samples were obtained from a commercial chicken meat production facility in Poland. The antibiotic resistance profile was characterized by co-resistance to β-lactam antibiotics, aminoglycosides, and fluoroquinolones. The three identified resistance plasmids (R-plasmids), pECmdr13.2, pECmdr13.3, and pECmdr14.1, harbored various genes conferring resistance to tetracyclines (tetR[A]) for, aminoglycoside (aph, aac, and aad families), β-lactam (bla(CMY-2), bla(TEM-176)), sulfonamide (sul1, sul2), fluoroquinolone (qnrS1), and phenicol (floR). These plasmids, which have not been previously reported in Poland, were found to carry IS26 insertion elements, the intI1-integrase gene, and conjugal transfer genes, facilitating horizontal gene transfer. Plasmids pECmdr13.2 and pECmdr14.1 also possessed a mercury resistance gene operon related to transposon Tn6196; this promotes plasmid persistence even without antibiotic selection pressure due to co-selection mechanisms such as co-resistance. The chicken manure-derived plasmids belonged to the IncX1 (narrow host range) and IncC (broad host range) incompatibility groups. Similar plasmids have been identified in various environments, clinical isolates, and farm animals, including cattle, swine, and poultry. This study holds significant importance for the One Health approach, as it highlights the potential for antibiotic-resistant bacteria from livestock and food sources, particularly E. coli, to transfer through the food chain to humans and vice versa.202439007976
1510150.9944Fluoroquinolone-resistant and extended-spectrum beta-lactamase producing Escherichia coli isolates from free-living wild animals. During the hunting season 2013-2014, fecal samples collected from hare, roe deer, deer and wild boars were sent to the bacteriology laboratory for the isolation of Escherichia coli and multidrug resistant isolates were characterized phenotypically and genotypically. Out of 106 fecal samples, E. coli was isolated from 101 samples. Although the majority of isolates belonged to phylogenetic groups A and B1, 14 out of 101 isolates were affiliated to group B2. A multidrug resistance phenotype was determined in 7 isolates, all of which had distinguishable genomic macrorestriction profiles. PCR analysis and sequencing revealed a variety of resistance genes, gene cassettes and cassette arrays in these multidrug resistant isolates. Resistance to fluoroquinolones was found in five E. coli isolates (two from a roe deer, one from a deer and two from a wild boar) and multiple mutations in the chromosomal topoisomerase genes were identified. In an E.coli isolate from a hare, the qnrB19 gene was detected. The same isolate carried an aadA23 gene cassette in class 1 integron. In addition, an extended- spectrum beta-lactamase bla(CTX-M-1) gene was detected in an E. coli isolate from a roe deer. The gene was located on a conjugative multi resistance plasmid, which was transferable to a plasmid free E. coli recipient. In conclusion, a number of resistance genes and mobile genetic elements were detected in E. coli isolates from wildlife in Vojvodina, emphasizing the role of environmental pollution in spreading resistant bacteria.201830173743
3550160.9944Conjugative transmission of antibiotic-resistance from stream water Escherichia coli as related to number of sulfamethoxazole but not class 1 and 2 integrase genes. A conjugation assay was used to determine the effects of phenotypic resistance to one to up to 5 antibiotics, sampling site of origin, presence or absence of class 1 and/or class 2 integrase (intI) genes (intI1 and intI2), and the number of sulfamethoxazole resistance (sul) and trimethoprim resistance (dfr) genes on the transfer frequencies of plasmids from environmental, antibiotic-resistant Escherichia coli. Of 51 sulfamethoxazole and trimethoprim-resistant E. coli isolates conferring at least one mob gene (mob(P51), mob(F11), mob(F12), mob(Q11), mob(Q12) , or mob(Qu) ), 38 produced transconjugants with an overall mean frequency of 1.60 × 10(-3) transconjugants/ donors (T/D) or 5.89 × 10(-3) transconjugants/recipients (T/R). The presence or absence of intI1 and intI2 and the presence or absence of different targeted dfr genes (dfrA1, dfrA8, dfrA12, dfrA14, dfrA17, and/or dfrB3) were not statistically related to plasmid transfer frequencies as determined by ANOVA (P ≥ 0.05). However, E. coli isolates recovered 2 km downstream of wastewater treatment plant effluent input, and those possessing resistance to 3 antibiotics had significantly greater plasmid transfer frequency than their counterparts when calculated as T/D (ANOVA followed by Fisher's least significant difference means comparison, P < 0.05). Greater plasmid transfer frequency calculated as T/D was also measured for E. coli possessing 3 compared to a single sul gene. The in-vitro frequency suggests that horizontal gene transfer of conjugative mediated-antibiotic (sul) resistance genes may be significant among resistant, stream bacteria.201628090382
5860170.9943Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
2995180.9943Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique.200111722546
2894190.9943Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. A potential factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes between bacteria in animals or their environment. To investigate this, swine fecal samples were collected on-farm and cultured for Escherichia coli, Salmonella enterica, Campylobacter spp., and Enterococcus spp. which are all commonly found in swine. Forty-nine of the samples from which all four bacteria were recovered were selected yielding a total of 196 isolates for analysis. Isolates were tested for antimicrobial susceptibility followed by hybridization to a DNA microarray designed to detect 775 AR-related genes. E. coli and Salmonella isolated from the same fecal sample had the most AR genes in common among the four bacteria. Genes detected encoded resistance to aminoglycosides (aac(3), aadA1, aadB, and strAB), β-lactams (ampC, ampR, and bla(TEM)), chloramphenicols (cat and floR), sulfanillic acid (sul1/sulI), tetracyclines (tet(A), tet(D), tet(C), tet(G), and tet(R)), and trimethoprim (dfrA1 and dfh). Campylobacter coli and Enterococcus isolated from the same sample frequently had tet(O) and aphA-3 genes detected in common. Almost half (47%) of E. coli and Salmonella isolated from the same fecal sample shared resistance genes at a significant level (χ², p < 0.0000001). These data suggest that there may have been horizontal exchange of AR genes between these bacteria or there may be a common source of AR genes in the swine environment for E. coli and Salmonella.201121385089