# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2525 | 0 | 0.9953 | Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns. | 2018 | 28970159 |
| 1819 | 1 | 0.9949 | Antimicrobial-resistant Enterobacteriaceae recovered from companion animal and livestock environments. Antimicrobial-resistant bacteria represent an important concern impacting both veterinary medicine and public health. The rising prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase, carbapenemase (CRE) and fluoroquinolone-resistant Enterobacteriaceae continually decreases the efficiency of clinically important antibiotics. Moreover, the potential for zoonotic transmission of antibiotic-resistant enteric bacteria increases the risk to public health. Our objective was to estimate the prevalence of specific antibiotic-resistant bacteria on human contact surfaces in various animal environments. Environmental surface samples were collected from companion animal shelters, private equine facilities, dairy farms, livestock auction markets and livestock areas of county fairs using electrostatic cloths. Samples were screened for Enterobacteriaceae expressing AmpC, ESBL, CRE or fluoroquinolone resistance using selective media. Livestock auction markets and county fairs had higher levels of bacteria expressing both cephalosporin and fluoroquinolone resistance than did equine, dairy, and companion animal environments. Equine facilities harboured more bacteria expressing cephalosporin resistance than companion animal shelters, but less fluoroquinolone resistance. The regular use of extended-spectrum cephalosporins in livestock populations could account for the increased levels of cephalosporin resistance in livestock environments compared to companion animal and equine facilities. Human surfaces, as well as shared human and animal surfaces, were contaminated with resistant bacteria regardless of species environment. Detecting these bacteria on common human contact surfaces suggests that the environment can serve as a reservoir for the zoonotic transmission of antibiotic-resistant bacteria and resistance genes. Identifying interventions to lower the prevalence of antibiotic-resistant bacteria in animal environments will protect both animal and public health. | 2018 | 29575700 |
| 5011 | 2 | 0.9948 | Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal. | 2020 | 32042963 |
| 5008 | 3 | 0.9947 | Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. BACKGROUND: The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. MAIN BODY: The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the (bla)CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. CONCLUSION: The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making. | 2020 | 32762743 |
| 2590 | 4 | 0.9947 | Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship. | 2021 | 34579656 |
| 6603 | 5 | 0.9947 | Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as bla(TEM), sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers. | 2023 | 37394072 |
| 2500 | 6 | 0.9947 | The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO. | 2023 | 36241158 |
| 6690 | 7 | 0.9947 | Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh. | 2020 | 33487990 |
| 5012 | 8 | 0.9947 | Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets. | 2011 | 21462862 |
| 2535 | 9 | 0.9946 | Mobile Colistin Resistance (mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission. | 2022 | 35745552 |
| 2499 | 10 | 0.9946 | The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environmental reservoirs of antibiotic resistance (AR) are a growing concern that are gathering more attention as potential sources for human infection. Carbapenem-resistant Enterobacteriaceae (CRE) are extremely dangerous, as carbapenems are often drugs of last resort that are used to treat multi-drug resistant infections. Among the genes capable of conferring carbapenem resistance to bacteria, the most transferrable are those that produce carbapenemase, an enzyme that hydrolyzes carbapenems and other β-lactam antibiotics. The goal of this review was to comprehensively identify global environmental reservoirs of carbapenemase-producing genes, as well as identify potential routes of transmission to humans. The genes of interest were Klebsiella pneumoniae carbapenemase (KPC), New Delhi Metallo-β-lactamase (NDM), Oxacillinase-48-type carbapenemases (OXA-48), and Verona Integron-Mediated Metallo-β-lactamase (VIM). Carbapenemase genes have been reported in the environment on almost every continent. Hospital and municipal wastewater, drinking water, natural waterways, sediments, recreational waters, companion animals, wildlife, agricultural environments, food animals, and retail food products were identified as current reservoirs of carbapenemase-producing bacteria and genes. Humans have been recorded as carrying CRE, without recent admittance to a hospital or long-term care facility in France, Egypt, and China. CRE infections from the environment have been reported in patients in Montpellier, France and Cairo, Egypt. This review demonstrates the need for 1) comprehensive monitoring of AR not only in waterways, but also other types of environmental matrices, such as aerosol, dusts, periphyton, and surfaces in indoor environments; and 2) action to reduce the prevalence and mitigate the effects of these potentially deadly resistance genes. In order to develop an accurate quantitative model for environmental dimensions of AR, longitudinal sampling and quantification of AR genes and bacteria are needed, using a One Health approach. | 2019 | 31541827 |
| 1738 | 11 | 0.9946 | Role of Institut Hospitalo-Universitaire Méditerranée Infection in the surveillance of resistance to antibiotics and training of students in the Mediterranean basin and in African countries. Surveillance of antibiotic resistance has become a public global concern after the rapid worldwide dissemination of several antibiotic resistance genes. Here we report the role of the Institut Hospitalo-Universitaire Méditerranée Infection created in 2011 in the identification and description of multidrug-resistant bacteria thanks to collaborations and training of students from the Mediterranean basin and from African countries. Since the creation of the institute, 95 students and researchers have come from 19 different countries from these areas to characterize 6359 bacterial isolates from 7280 samples from humans (64%), animals (28%) and the environment (8%). Most bacterial isolates studied were Gram-negative bacteria (n = 5588; 87.9%), mostly from Algeria (n = 4190), Lebanon (n = 946), Greece (n = 610), Saudi Arabia (n = 299) and Senegal (n = 278). Antibiotic resistance was diversified with the detection and characterization of extended-spectrum β-lactamases, carbapenemases and resistance to colistin, vancomycin and methicillin. All those studies led to 97 indexed international scientific papers. Over the last 6 years, our institute has created a huge network of collaborations by training students that plays a major role in the surveillance of resistance to antibiotics in these countries. | 2018 | 30402244 |
| 1866 | 12 | 0.9946 | Drivers of the emergence and dissemination of high-risk resistance genes in cattle farm. Extended spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales (CPE) are recognized by WHO as critical concerns. The high cephalosporin resistance rate in a cattle farm in 2018 prompted us to conduct long-term (2019-2023) and extensive monitoring to explore risk factors for the import and transmission of ESBLs and CPE in this farm. Among 1288 samples from cattle, the environment, milk, and biological vectors, 48.8 % carried bla(CTX-M)-positive Enterobacterales with bla(CTX-M-55) being dominant (76.4 %), and bla(NDM-5)-positive strains emerged in 2022 with a 1.9 % detection rate. bla(CTX-M-55) and bla(NDM-5) were likely introduced through various routes, especially wild birds, and have persisted due to overuse of cephalosporins in the farm. The spread of these genes was driven by the horizontal transmission of IncHI2 and IncX3 plasmids and clonal dissemination of certain clones. Cross-regional and cross-border transmission of bla(CTX-M-55)- and/or bla(NDM-5)-bearing bacteria and plasmids possibly occurred via wild birds, animal trade, and other means. Our findings suggest that the import, persistence, and dissemination of these genes within and beyond this farm, were fueled by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to prevent the spread of resistance genes as part of a holistic One Health strategy. ENVIRONMENTAL IMPLICATION: The high prevalence and long-term persistence of extended-spectrum β-lactamases and the emergence of carbapenemases in cattle and the environment signify a critical risk of transmitting high-risk resistance genes, posing a significant threat to human health. Consequently, bacteria carrying these genes in animal farms should be regarded as "hazardous materials". Import, persistence, and dissemination of these genes within and beyond this farm were exacerbated by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to mitigate the environmental risks associated with gene transmission as part of a comprehensive One Health strategy. | 2025 | 39899930 |
| 2532 | 13 | 0.9946 | Prevalence of ESBL-Resistant Genes in Birds in Italy-A Comprehensive Review. Antimicrobial resistance (AMR) is a major global concern in both human and veterinary medicine. Among antimicrobial resistance (AMR) bacteria, Extended-Spectrum Beta-Lactamases (ESBLs) pose a serious health risk because infections can be difficult to treat. These Gram-negative bacteria can be frequently found in poultry and in Italy, where such protein production is established. ESBL-producing Escherichia coli, Salmonella and Klebsiella in chicken and turkey may pose a significant public health risk due to potential transmission between poultry and humans. This review aims to assess the prevalence of ESBL-producing E. coli, Salmonella and Klebsiella phenotypically and genotypically in Italian poultry, identifying the most common genes, detection methods and potential information gaps. An initial pool of 1462 studies found in scientific databases (Web of Sciences, PubMed, etc.) was screened and 29 were identified as eligible for our review. Of these studies, 79.3% investigated both phenotypic and genotypic ESBL expression while blaCTX-M, blaTEM and blaSHV were considered as targeted gene families. Large differences in prevalence were reported (0-100%). The blaCTX-M-1 and blaTEM-1 genes were the most prevalent in Italian territory. ESBL-producing E. coli, Salmonella and Klebsiella were frequently detected in farms and slaughterhouses, posing a potential threat to humans through contact (direct and indirect) with birds through handling, inhalation of infected dust, drinking contaminated water, ingestion of meat and meat products and the environment. Considering the frequent occurrence of ESBL-producing bacteria in Italian poultry, it is advisable to further improve biosecurity and to introduce more systematic surveillance. Additionally, the focus should be on the wild birds as they are ESBL carriers. | 2025 | 40509064 |
| 2586 | 14 | 0.9946 | A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach. | 2025 | 40426503 |
| 1840 | 15 | 0.9946 | Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Animals have been identified as potential reservoirs and vectors of resistance genes, with studies showing that Gram-negative bacteria can acquire resistance through the horizontal transmission of resistance genes on plasmids. It is important to understand the distribution of antimicrobial-resistant bacteria and their drug-resistant genes in animals. Previous review articles mostly focused on a single bacterium or a single animal. Our objective is to compile all ESBL-producing bacteria isolated from various animals in recent years and provide a comprehensive viewpoint. Using a thorough PubMed literature search spanning from 1 January 2020 to 30 June 2022, studies exploring extended-spectrum beta-lactamase (ESBL) producing bacteria in animals were included. ESBL-producing bacteria are present in animals from various countries around the world. The most common sources of these bacteria were farm animals, and the most frequently isolated bacteria were Escherichia coli and Klebsiella pneumoniae. The most detected ESBL genes were bla(TEM), bla(SHV), and bla(CTX-M). The presence of ESBL-producing bacteria in animals highlights the importance of the One Health approach to address the issue of antibiotic resistance. Further research is needed to better understand the epidemiology and mechanisms of the spread of ESBL-producing bacteria in animal populations and their potential impact on human and animal health. | 2023 | 37107023 |
| 1839 | 16 | 0.9945 | Environmental mediation of colistin resistance in the African context. A systematic scoping review. OBJECTIVES: The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is a major global health concern. Resistance to last-resort antibiotics like colistin is particularly alarming. This study reviews how environmental factors have contributed to colistin resistance in the African context, where reports of colistin-resistant Gram-negative organisms are emerging. METHODS: A systematic review was conducted using multiple databases to identify articles on environmental mediation of colistin resistance in Africa. Search terms included "environment," "colistin," "mobile colistin resistance gene," and related keywords. Articles from 2015 to 2021 focusing on Africa were included. Data on country, genes detected, methods used, and bacterial species were extracted. RESULTS: Out of 847 articles identified, 26 were included in the final review. Studies were predominantly from Tunisia, Algeria, South Africa, Egypt, Nigeria, and Congo. The mobile colistin resistance (mcr-1) gene was the most common genetic variant detected. Escherichia coli (E. coli) was the predominant organism spreading mcr genes. Colistin-resistant genes were found in humans, animals, and environmental samples including manure, soil, water bodies, and wildlife. CONCLUSIONS: This review confirms the rapid spread of plasmid-mediated colistin-resistant genes in humans, animals, and the environment across Africa. The movement of resistant genes between these reservoirs is alarming. There is a need for more research into colistin resistance mechanisms and implementation of continent-wide antibiotic stewardship programs to address this emerging threat in Africa. © 2024 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy. | 2025 | 39681218 |
| 1820 | 17 | 0.9945 | Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. The role of wild birds in the carriage and transmission of human and food animal bacteria with resistant genotypes has repeatedly been highlighted. However, few studies have focussed on the specific exposure sources and places of acquisition and selection for antimicrobial-resistant bacteria in vultures relying on livestock carcasses across large areas and different continents. The occurrence of bacterial resistance to antimicrobial agents was assessed in the faecal microbiota of sedentary Griffon vultures (Gyps fulvus) and trans-Saharan migratory Egyptian vultures (Neophron percnopterus) in central Spain. High rates (generally >50%) of resistant Escherichia coli and other enterobacteria to amoxicillin, cotrimoxazole and tetracycline were found. About 25-30% of samples were colonised by extended-spectrum beta-lactamases (ESBL) producing bacteria, while 5-17% were positive for plasmid mediated quinolone resistance (PMQR) phenotypes, depending on vulture species and age. In total, nine ESBL types were recorded (7 in griffon vultures and 5 in Egyptian vultures), with CTX-M-1 the most prevalent in both species. The most prevalent PMQR was mediated by qnrS genes. We found no clear differences in the occurrence of antimicrobial resistance in adult vultures of each species, or between nestling and adult Egyptian vultures. This supports the hypothesis that antimicrobial resistance is acquired in the European breeding areas of both species. Bacterial resistance can directly be driven by the regular ingestion of multiple active antimicrobials found in medicated livestock carcasses from factory farms, which should be not neglected as a contributor to the emergence of novel resistance clones. The One Health framework should consider the potential transboundary carriage and spread of epidemic resistance from high-income European to low-income African countries via migratory birds. | 2020 | 32758969 |
| 2529 | 18 | 0.9945 | Antibiotic-Resistant Bacteria Isolated from Street Foods: A Systematic Review. Street food may be a vehicle of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) to humans. Foods contaminated with ARB entail serious problems or challenges in the fields of medical care, animal husbandry, food industry, and public health worldwide. The objectives of this systematic review were to identify and evaluate scientific reports associated with ARB isolated from various street foods. "Preferred reporting items for systematic reviews and meta-analysis" (PRISMA) guidelines were followed. The bibliographic material covers a period from January 2015 to April 2024. Six electronic scientific databases were searched individually for full-text articles; only those papers that met the inclusion and exclusion criteria were selected. Seventeen papers were included in this systematic review. This study highlighted the wide distribution of ARB resistant to β-lactams and other antibiotics, posing significant health risks to consumers. High resistance levels were observed for antibiotics such as ampicillin, ceftriaxone, and tetracycline, while some antibiotics, such as ceftazidime, clavulanic acid, cefoperazone, cotrimoxazole, doxycycline, doripenem, fosfomycin, vancomycin, and piperacillin-tazobactam, demonstrated 100% susceptibility. The prevalence of ARB in street foods varied between 5.2% and 70.8% among different countries. The multiple resistance of various bacteria, including Escherichia coli, Staphylococcus, Salmonella, and Klebsiella, to multiple classes of antibiotics, as well as environmental factors contributing to the spread of antibiotic resistance (AR), emphasize the urgent need for comprehensive approaches and coordinated efforts to confront antimicrobial resistance (AMR) under the "One Health" paradigm. | 2024 | 38927148 |
| 5010 | 19 | 0.9945 | Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Antimicrobial resistance is an increasing global health problem and one of the major concerns for economic impacts worldwide. Recently, resistance against carbapenems (doripenem, ertapenem, imipenem, meropenem), which are critically important antimicrobials for human cares, poses a great risk all over the world. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and encoded by both chromosomal and plasmidic genes. They hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillins and aztreonam. Despite several studies in human patients and hospital settings have been performed in European countries, the role of livestock animals, wild animals and the terrestrial and aquatic environment in the maintenance and transmission of carbapenemase- producing bacteria has been poorly investigated. The present review focuses on the carbapenemase-producing bacteria detected in pigs, cattle, poultry, fish, mollusks, wild birds and wild mammals in Europe as well as in non-European countries, investigating the genetic mechanisms for their transmission among food-producing animals and wildlife. To shed light on the important role of the environment in the maintenance and genetic exchange of resistance determinants between environmental and pathogenic bacteria, studies on aquatic sources (rivers, lakes, as well as wastewater treatment plants) are described. | 2019 | 31316921 |