CALL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
142500.9923Distribution and Antimicrobial Resistance of Complicated Intraabdominal Infection Pathogens in Two Tertiary Hospitals in Egypt. Background: Management of complicated intraabdominal infections (cIAIs) requires containment of the source and appropriate initial antimicrobial therapy. Identifying the local data is important to guide the empirical selection of antimicrobial therapy. In this study, we aimed to describe the pathogen distribution and antimicrobial resistance of cIAI. Methods: In two major tertiary care hospitals in Egypt, we enrolled patients who met the case definition of cIAI from October 2022 to September 2023. Blood cultures were performed using the BACTAlert system (BioMerieux, Marcy l'Etoile, France). A culture of aspirated fluid, resected material, or debridement of the infection site was performed. Identification of pathogens and antimicrobial susceptibility testing were conducted by the VITEK-2 system (BioMerieux, Marcy l'Etoile, France). Gram-negative resistance genes were identified by PCR and confirmed by whole bacterial genome sequencing using the Nextera XT DNA Library Preparation Kit and sequencing with the MiSeq Reagent Kit 600 v3 (Illumina, USA) on the Illumina MiSeq. Results: We enrolled 423 patients, 275 (65.01%) males. The median age was 61.35 (range 25-72 years). We studied 452 recovered bacterial isolates. Gram-negative bacteria were the vast majority, dominated by E. coli, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis (33.6%, 30.5%, 13.7%, 13%, and 5.4%, respectively). High rates of resistance were detected to third- and fourth-generation cephalosporins and fluoroquinolones. No resistance was detected to colistin. Resistance to amikacin and tigecycline was low among all isolates. Resistance to meropenem and ceftazidime/avibactam was moderate. ESBL genes were common in E. coli and K. pneumoniae. CTX-M15 gene was the most frequent. Among Enterobacterales, bla(OXA-48) and bla(NDM) were the most prevalent carbapenemase genes. Pseudomonas aeruginosa isolates harbored a wide variety of carbapenemase genes (OXA, NDM, VIM, SIM, GIM, SPM, IMP, AIM), dominated by metallo-beta-lactamases. In 20.6% of isolates, we identified two or more resistance genes. Conclusion: High resistance rates were detected to third- and fourth-generation cephalosporins and fluoroquinolones. Amikacin and tigecyclines were the most active antimicrobials. Our data call for urgent implementation of antimicrobial stewardship programs and reinforcement of infection control.202439172656
143310.9922Carbapenem resistance in gram-negative pathogens in an Iranian hospital: high prevalence of OXA-type carbapenemase genes. BACKGROUND: The widespread dissemination of carbapenem- resistant gram-negative bacteria poses a significant threat to global public health. PURPOSE: This study aimed to investigate the prevalence of carbapenem resistance in gram-negative bacteria isolated from patients at the Children's Medical Center Hospital, Tehran, Iran, to understand the molecular mechanisms underlying this resistance. METHODS: During the period spanning from June 2019 to June 2020, 777 gram-negative bacterial strains were isolated. Antibiotic susceptibility testing was performed according to Clinical and Laboratory Standards Institute. Polymerase chain reaction was used to detect carbapenem resistance genes including bla OXA23, bla OXA24, bla OXA48, bla OXA51, bla OXA58, bla OXA143, bla KPC, bla IMP, bla VIM, and bla NDM. RESULTS: Among the total bacterial isolates, 141 (18.1%) exhibited carbapenem resistance. Escherichia coli was the most prevalent (57.4%), followed by Klebsiella pneumoniae (11.3%), and Acinetobacter baumannii (10.6%). Other notable contributors included Enterobacter spp. (5.7%), Salmonella spp. (3.5%), and Stenotrophomonas maltophilia (2.8%). Citrobacter spp., Proteus mirabilis, and Pseudomonas aeruginosa contributed to the distributions of 2, 1, and 3 isolates, respectively. Notably, bla OXA48 showed the highest prevalence (33%), followed by bla OXA143 and bla OXA5 8 (27% and 24%, respectively). In addition, bla OXA24 was present in 11% of the total isolates, bla OXA23 in 10%, and bla NDM in 10%, whereas bla KPC, bla VIM, and bla IMP were not detected. CONCLUSION: Our study highlights the prevalence of carbapenemase- producing gram-negative isolates among pediatric patients. Notable resistance patterns, especially in K. pneumoniae and E. coli, underline the urgent need for proactive interventions, including appropriate antibiotic prescription practices and strengthening of antibiotic stewardship programs.202539483044
306920.9921The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments.202540483807
210430.9920A systematic review and meta-analysis on antibiotic resistance genes in Ghana. BACKGROUND: Addressing antimicrobial resistance (AMR) poses a complex challenge, primarily because of the limited understanding of bacterial antibiotic resistance genes (ARGs) and the spread of these genes across different domains. To bridge this knowledge gap in Ghana, we undertook a comprehensive systematic review and meta-analysis to quantify and estimate the prevalence of circulating ARGs in bacteria isolated from human, animal, and environmental sources. METHODS: A thorough literature search was conducted across three major databases-Web of Science, PubMed, and Scopus-to retrieve all relevant articles related to ARGs in Ghana from the inception of the databases to February 25, 2024. A risk-of-bias evaluation was performed using the Newcastle-Ottawa Scale (NOS), and the data analysis involved descriptive statistics and proportional meta-analysis. RESULTS: Of the 371 articles initially obtained, 38 met the inclusion criteria. These studies adequately covered Ghana geographically. The most prevalent ESBL gene identified was bla(CTX-M), with a prevalence of 31.6% (95% CI: 17.6-45.7), followed by bla(TEM) (19.5% [95% CI: 9.7-29.3]), and bla(SHV) (3.5% [95% CI: 0.3-6.6]). The pooled prevalence of carbapenemase genes ranged from 17.2% (95% CI: 6.9-27.6) for bla(NDM) to 10.3% (95% CI: 1.9-18.7) for bla(OXA). Additionally, other ARGs, including sul1, qnrS, gyrA, erm(B), and mecA, were detected, with prevalence ranging from 3.9% (95% CI: 0.0-8.5) to 16.4% (95% CI: 3.1-29.8). Several ARGs were shared across human, animal, and environmental sources. CONCLUSION: This review revealed that bacteria obtained from human, animal, and environmental samples in Ghana shared genes associated with AMR. This finding provides evidence on the interconnection of AMR across these three domains. Horizontal gene transfer, which enables the dissemination of ARGs between genetically diverse bacteria, can occur, necessitating a multidisciplinary approach to addressing antimicrobial resistance in Ghana.202540075357
210140.9920Antibiotic resistance genes circulating in Nigeria: a systematic review and meta-analysis from the One Health perspective. BACKGROUND: The misuse of antibiotics in developing countries has created serious threats to public healthcare systems and reduced treatment options. Multidrug-resistant bacteria harbour antibiotic resistance genes that help them subdue the effectiveness of several available antibiotics. This review aimed to assess antimicrobial resistance genes circulating in Nigeria via a systematic review and meta-analysis. METHODS: A comprehensive literature search was performed using five electronic databases: PubMed, Web of Science, Scopus, Google Search, and African Journals Online (AJOL). Articles related to antibiotic resistance genes in Nigeria, published between January 1, 2015 and October 31, 2024, were included. The Newcastle-Ottawa scale (NOS) was used to assess the risk of bias. The meta-analysis for random effects was performed to determine the proportions and pooled prevalence of the resistance genes from the various One Health domains, as well as heterogeneity in the data, using R software (Version 4.3.3) and the metaprop package. RESULTS: Of the 762 articles retrieved, 56 (humans [n = 33], animals [n = 8], environment [n = 12], human/animal [n = 1], and human/animal/environment [n = 2]) from the six geopolitical zones in Nigeria met the inclusion criteria. The extended-spectrum beta-lactamase (ESBL) gene with the highest pooled prevalence was blaSHV (24.0% [95% CI: 12.0–44.0]), followed by blaCTX-M (23.0% [95% CI: 14.0–37.0]), and the least was blaTEM (18.0% [95% CI: 8.0–37.0]). Among the carbapenemase genes, blaKPC (33.0% [95% CI: 7.0–76.0]) was the most prevalent, followed by blaNDM (21.0% [95% CI: 9.0–41.0]), blaOXA (11.0% [95% CI: 2.0–46.0]) and the least was blaVIM (9.0% [95% CI: 3.0–26.0]). The mecA gene also had a high pooled prevalence (51.0% [95% CI: 14.0–86.0]). The pooled prevalence of the erm, sul, tet, and qnr genes ranged from 19.0% (95% CI: 8.0–38.0) to 27.0% (95% CI: 13.0–47.0). Some antibiotic resistance genes were shared among the three domains. CONCLUSION: This systematic review and meta-analysis has demonstrated the co-existence of antibiotic resistance genes among bacteria causing infection in Nigeria, via the One Health approach. There is a need for future research on the circulation of antibiotic resistance genes in developing countries using internationally approved approaches to track down this menace. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-025-02163-y.202540619397
94950.9920Molecular and clinical insights into extended-spectrum β-lactamase genes of Klebsiella pneumoniae isolated from neonatal sepsis in Ethiopia. BACKGROUND: Klebsiella bacterial strains harboring Extended-Spectrum Beta-Lactamase (ESBL) enzymes are the primary culprits behind neonatal sepsis globally. These strains significantly impact clinical outcomes due to their multi-drug resistance patterns in local healthcare settings. In response to this spiraling threat, we studied the prevalence and clinical implications of ESBL-encoding genes in neonates hospitalized with confirmed sepsis. METHODS: A correlational study was conducted on 51 neonates diagnosed with sepsis caused by ESBL-positive Klebsiella pneumoniae at Jimma Medical Center spanning from May 2022 to July 2023. Antimicrobial resistance profiles of the bacterial isolates were determined using the Kirby-Bauer diffusion test, while multiplex polymerase chain reaction (mPCR) techniques were employed to identify resistance genes. The correlation between resistance genes and treatment outcomes was analyzed using the phi coefficient (φ) with a significance level below 0.05. The data management was executed through the utilization of WHONET and STATA software platforms. RESULTS: The sample consisted of 26 (50.9%) male and the remaining 25 (49.1%) female neonates, with diverse clinical characteristics. All 51 Klebsiella pneumoniae isolates were 100% resistant to trimethoprim/sulfamethoxazole and ceftriaxone, but showed varying resistance profiles ranging from 30.8% to meropenem to 94.2% to ceftazidime. Notably, all isolates demonstrated multidrug resistance, with 23% of cases showing resistance to seven different antimicrobial classes. The most prevalent resistance genes identified were bla(CTX-M) (96.1%), bla(TEM) (94.1%), and bla(SHV) (88.2%). The majority of isolates (94.1%) carried at least two resistance genes, such as bla(TEM) and bla(CTX) (94.1%), bla(TEM) and bla(SHV) (86.2%), and bla(CTX) and bla(SHV) (86.2%). Notably, 84.3% of the bacteria harbored the trio of bla(TEM), bla(CTX), and bla(SHV) resistance genes, and only the presence of bla(SHV) in monogenic (φ = 0.4, P = 0.01) or the trio of bla(TEM), bla(CTX), and bla(SHV) genes (φ = 0.3, P = 0.02) showed positive correlation with neonatal mortality. CONCLUSION: We observed a significant prevalence of multidrug-resistant Klebsiella pneumoniae strains among neonates. Moreover, ESBL-resistance genes were widespread, with the blaSHV gene showing a correlation with increased neonatal mortality. These findings emphasize the urgent need for enhanced infection prevention measures, robust antimicrobial resistance surveillance, innovative treatment strategies, antibiotic stewardship initiatives, further research into resistance transfer mechanisms as well as hierarchical predictors of neonatal mortality. CLINICAL TRIAL NUMBER: Not applicable.202439695444
153860.9920KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: bla(KPC-80), bla(KPC-81), bla(KPC-96) and bla(KPC-97). Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of bla(KPC-2) resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant bla(KPC) genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for bla(KPC-80), bla(KPC-96), and bla(KPC-97) by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including bla(TEM-1), bla(OXA-18) and bla(OXA-1), were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of bla(KPC-2) and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE: The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, bla(KPC-2). The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.202438319084
95170.9919Analyses of Extended-Spectrum-β-Lactamase, Metallo-β-Lactamase, and AmpC-β-Lactamase Producing Enterobacteriaceae from the Dairy Value Chain in India. The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of β-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified β-lactamase genes in isolates were bla(CMY), bla(MOX), bla(FOX), bla(EBC), and bla(DHA), associated with AmpC production. Additionally, bla(CTX-M1), bla(SHV), and bla(TEM) were detected as ESBL producers, while bla(VIM), bla(IMP), bla(SPM), bla(SIM), and bla(GIM) were identified as MBL producers. Notably, Shigella spp. were the dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of β-lactam resistance.202337760745
182180.9919Emergence and dissemination of bla(KPC-31) and bla(PAC-2) among different species of Enterobacterales in Colombia: a new challenge for the microbiological laboratories. Ceftazidime/avibactam (CZA) is a promising treatment option for infections caused by carbapenem-resistant Enterobacterales (CRE). However, CZA resistance is increasingly reported worldwide, largely due to the emergence of KPC variants and increase of metallo-β-lactamases (MBL). This study describes the mechanisms associated with CZA resistance in circulating Enterobacterales isolates from Colombia, highlighting the challenge this represents for microbiological identification. Between 2021 and 2024, 68 CZA-resistant Enterobacterales isolates were identified by automated methods in seven Colombian cities. Resistance to CZA was subsequently confirmed by broth microdilution and E-test. Carbapenemase production was evaluated using phenotypic tests, such as the mCIM test, Carba NP, lateral flow assay, and qPCR (bla(KPC), bla(NDM), bla(VIM), bla(IMP), and bla(OXA-48)). Whole-genome sequencing was performed on 15 isolates that tested negative for MBL genes. Whole-genome sequencing of these 15 isolates revealed a variety of resistance determinants: six isolates harbored bla(KPC-31), one bla(KPC-33), one bla(KPC-8), five harbored bla(PAC-2), and two co-harbored bla(PAC-2) and bla(KPC-2). Notably, bla(PAC-2) was located on an IncQ plasmid. However, some of these variants were not detected by phenotypic assays, likely due to their low or undetectable carbapenemase activity. CZA resistance in non-MBL producing Enterobacterales in Colombia is primarily mediated by the presence of bla(KPC-31) and emergence of bla(PAC-2). These resistance mechanisms pose significant diagnostic, therapeutic, and epidemiological challenges, as they frequently go undetected by conventional microbiological methods. In this context, enhanced molecular surveillance and improved diagnostic strategies are urgently needed to enable early detection, guide antimicrobial therapy, and support infection control and stewardship efforts.IMPORTANCEAntibiotic resistance is a serious global health threat. Ceftazidime/avibactam (CZA) is a key treatment option for multidrug-resistant (MDR) Enterobacterales often used when other antibiotics fail. However, bacteria are now developing resistance to this drug as well, making infections increasingly difficult to treat. In this study, we examined CZA-resistant bacteria from multiple cities in Colombia and found uncommon resistance genes across several bacterial species. These genes are frequently missed, as they often do not test positive due to the limitations of most routinely used laboratory tests. Importantly, some of these genes can be transferred between bacteria, increasing the likelihood of indiscriminate dissemination in the hospital setting. Therefore, our findings highlight the urgent need for improved diagnostic tools and molecular surveillance. Early detection will help physicians select effective treatments quickly and prevent the wider dissemination of these MDR-resistant bacteria.202541070989
140790.9919World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800
950100.9919Incidence of Extended Spectrum β-Lactamase Genes (ESBLs) among community and health care infection in Mansoura University Hospital, Egypt. BACKGROUND: Multidrug-resistant (MDR) Gram-negative bacteria pose a significant challenge due to their limited treatment options. The production of extended-spectrum β-lactamases (ESBLs) is an important mechanism of resistance. This study aimed to identify the incidence and characteristics of ESBL-encoding genes (bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA)) in MDR isolates. MATERIALS AND METHODS: A cross-sectional study was conducted from September 2022 to May 2023. ESBL-producing isolates (n = 105) out of 412 were recovered from hospitalized and outpatient settings and analyzed. Standard microbiological methods were used for isolates identification, susceptibility testing, and phenotypic ESBL detection. Additionally, bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes were identified using conventional PCR. RESULTS: Molecular profiling of β-lactamase determinants was conducted via PCR targeting bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes. Among phenotypically confirmed (100%) ESBL producers, 98% harbored one or more target genes, with bla(CTX-M) predominant (81%), followed by bla(SHV) (70.4%), bla(TEM) (62%), and bla(OXA) (30.4%). Carbapenem resistance was higher in ESBL-producing strains compared to non-ESBL strains. Extensively drug-resistant (XDR) isolates were the most common across hospital departments and outpatients. DISCUSSION: This study highlights the significant prevalence of ESBL genes and multidrug resistance among Gram-negative bacteria. The dominance of bla(CTX-M) and the existence of multiple resistance genes raise concerns about limited treatment options. The findings emphasize the need for stricter antibiotic stewardship and infection control measures to curb the spread of MDR pathogens. CONCLUSION: This study provides valuable insights into the alarming incidence of ESBL genes and MDR in Mansoura, Egypt. Continuous surveillance and implementation of effective control strategies are crucial to combat this growing public health threat.202540405086
1424110.9919Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.202337289837
842120.9918Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities.202541131447
2098130.9918Continuity of carbapenem resistance determinants in carioca river and Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil, after decade. Antimicrobial resistance is a major global issue in the 21st century, extending beyond hospitals to various ecosystems and organisms, including animals, soil, and bodies of water, thus becoming a One Health concern. This study investigates resistant Gram-negative bacteria and their antimicrobial resistance genes in water samples from the Carioca River (CR) and Rodrigo de Freitas Lagoon (RFL) in Rio de Janeiro, Brazil. The samples were collected from different locations, and bacteria were identified using Matrix-Assisted Laser Desorption/Ionization Time of Flight technology. Antimicrobial susceptibility was evaluated using the agar disk diffusion method and minimum inhibitory concentration testing. The presence of resistance determinants was investigated through conventional Polymerase Chain Reaction. Among the 101 Gram-negative isolates, 45% (46/101) were non-susceptible to carbapenems, with resistance genes found, including bla(KPC) (41%; 19/46), bla(GES) (26%; 12/46), bla(NDM) (6%; 3/46), bla(CTX−M) (6%; 3/46) and bla(VIM) (2%; 1/46). The intl1 was detected in 32% (15/46) of the bacterial isolates. When comparing the current study to a 2013 investigation, the consistent presence of bla(KPC) was observed at CR collection points. Additionally, bla(KPC) was detected in RFL. This highlights the persistent presence of bla(KPC) in the investigated environments, posing a threat to human, animal and environmental health. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1038/s41598-025-21876-9.202541168283
5236140.9918Genome characterization of a multi-drug resistant Escherichia coli strain, L1PEag1, isolated from commercial cape gooseberry fruits (Physalis peruviana L.). INTRODUCTION: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. METHODS: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. RESULTS: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). CONCLUSION: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.202439104589
1854150.9918Whole genome analysis reveals the distribution and diversity of plasmid reservoirs of NDM and MCR in commercial chicken farms in China. The increase in multidrug-resistant (MDR) Enterobacteriaceae presents a significant challenge to clinical treatment, particularly in infections where carbapenems and colistin serve as the last-resort antimicrobial agents. In this study, we isolated 119 non-repetitive gram-negative bacteria from MacConkey medium supplemented with imipenem and colistin. The isolates were dominated by Klebsiella pneumoniae (58.0%, n = 69) and Escherichia coli (31.1%, n = 37). The predominant sequence types (STs) of E. coli were ST226, ST1286, and ST11738, whereas K. pneumoniae displayed ST152, ST395, and ST709 as major types. Genomic analysis identified mcr-1/3/8/9 in 44 strains and bla(NDM) in 63 strains across various species. IncX3 (n = 57) and IncFII (n = 5) were the most common bla(NDM-5)-carrying plasmid types. Several plasmid replicons were associated with mcr genes, including IncI2, IncX4, and novel plasmids. Remarkably, we discovered four combinations of bla(NDM) and mcr co-occurrence in 28 isolates, including bla(NDM-5)/mcr-1, bla(NDM-5)/mcr-3, bla(NDM-5)/mcr-8, and bla(NDM-5)/mcr-9. Our findings reveal that chicken farms are significant reservoirs for both bla(NDM) and mcr genes, with frequent co-occurrence of these resistance determinants. The presence of these genes alongside other resistance factors, such as blaESBL, highlights a critical public health risk. This study underscores the need for enhanced surveillance and intervention strategies to mitigate the spread of MDR pathogens from agricultural environments to clinical settings.IMPORTANCEThis study reveals that commercial poultry farms in China serve as critical reservoirs for MDR gram-negative bacteria harboring carbapenemase (bla(NDM)) and mobilized colistin resistance (mcr) genes. By analyzing 119 isolates, we uncovered extensive genetic diversity and plasmid-mediated co-occurrence of these resistance determinants, enabling bacteria to evade nearly all available treatments. Alarmingly, the horizontal transfer of resistance genes via highly mobile plasmids facilitates their spread across microbial communities and potentially into clinical settings. These findings underscore the urgent need to address antibiotic overuse in agriculture and strengthen surveillance under the One Health framework. The persistence of MDR pathogens in poultry environments highlights a significant risk for zoonotic transmission, emphasizing the necessity of coordinated interventions to curb the global antimicrobial resistance crisis.202540488461
904160.9918High prevalence of contamination of sink drains with carbapenemase-producing Enterobacteriaceae in 4 intensive care units apart from any epidemic context. We report a high prevalence (28%) of sink drains contaminated with carbapenemase-producing Enterobacteriaceae (CPE) in 4 intensive care units with a history of CPE carriage in hospitalized patients within the previous 5 years, but apart from any current epidemic context. Carbapenemase genes, particularly bla(VIM) and bla(NDM), were identified by polymerase chain reaction in sink drains in which no CPE was detected, but very few data are available in the literature concerning their presence in sink drains.202031495643
1442170.9917Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. BACKGROUND: Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. METHODS: We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). RESULTS: From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB (n = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. CONCLUSIONS: We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat.201829484175
978180.9917Beta-lactamase resistance genes in Enterobacteriaceae from Nigeria. BACKGROUND: Beta-lactamase genes are one of the most important groups of antimicrobial resistance genes in human and animal health. Therefore, continuous surveillance of this group of resistance genes is needed for a better understanding of the local epidemiology within a country and global dissemination. AIM: This review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria. METHODS: Systematic review and meta-analysis was carried out on eligible Nigerian articles retrieved from electronic literature searches of PubMed(®), African Journals Online, and Google Scholar published between January 1990 and December 2019. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adopted to facilitate clarity and transparency in reporting review findings. RESULTS: Fifty-seven articles were included. All beta-lactamases reported were detected from Gram-negative bacteria, particularly from Enterobacteriaceae. Thirty-six different beta-lactamase genes were reported in Nigeria. These genes belong to the narrow-spectrum, AmpC, extended-spectrum and carbapenemase beta-lactamase resistance genes. The pooled proportion estimate of extended-spectrum beta-lactamase genes in Nigeria was 31% (95% confidence interval [CI]: 26% - 36%, p < 0.0001), while the estimate of the bla (CTX-M-15) gene in Nigeria was 46% (95% CI: 36% - 57%, p < 0.0001). The proportion estimate of AmpC genes was 32% (95% CI: 11% - 52%, p < 0.001), while the estimate for carbapenemases was 8% (95% CI: 5% - 12%, p < 0.001). CONCLUSION: This study provides information on beta-lactamase distribution in Nigeria. This is necessary for a better understanding of molecular epidemiology of clinically important beta-lactamases, especially the extended-spectrum beta-lactamases and carbapenemases in Nigeria.202235282396
960190.9917Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (bla(CMY-2,)bla(TEM-1A), and bla(TEM-1B)), 6 genes in Salmonella enterica (bla(CARB-2), bla(CMY-2), bla(CTXM-65), bla(TEM-1A), bla(TEM-1B), and bla(HERA-3)), and 2 genes in Campylobacter spp. (bla(OXA-61) and bla(OXA-449)) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. bla(CTXM-55) has been detected in E. coli isolates from the four food animal sources while bla(CTXM-15) and bla(CTXM-27) were found only in cattle and swine. In Salmonella enterica, bla(CTXM-2), bla(CTXM-9), bla(CTXM-14), bla(CTXM-15), bla(CTXM-27), bla(CTXM-55), and bla(NDM-1) were only detected among human isolates. bla(OXAs) and bla(CARB) were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface.202438325128