C1 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
522100.9869Molecular cloning of the DNA gyrase genes from Methylovorus sp. strain SS1 and the mechanism of intrinsic quinolone resistance in methylotrophic bacteria. The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones.200516404155
614910.9853Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L(-1) sodium arsenite, 400 mmol L(-1) sodium arsenate, 5 mmol L(-1) manganese sulfate, 3 mmol L(-1) lead nitrate, 2.5 mmol L(-1) cobalt chloride, 2.5  mmol L(-1) cadmium acetate, and 2.5 mmol L(-1) chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain.202336332226
614620.9851Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. This study aimed to identify arsenic resistant mechanisms in As-resistant purple nonsulfur bacteria (PNSB) by screening them for presence of As-resistance genes and related enzymes. Resistance to As(III) and As(V) of four As-resistant PNSB determined in terms of median inhibition concentration (IC(50) values) were in the order of strains Rhodopseudomonas palustris C1 > R. palustris AB3 > Rubrivivax benzoatilyticus C31 > R. palustris L28 which corresponded to the presence of As-resistance genes in these bacteria. The strain C1 showed all As-marker genes; arsC, arsM, aioA, and acr3, while aioA was not detected in strain AB3. Strains C31 and L28 had only Arsenite-transporter gene, acr3. Translation of all these detected gene sequences of strain C1 to amino acid sequences showed that these proteins have vicinal cysteine; Cys126, Cys105, and Cys178 of Acr3, ArsC, AioA, respectively. Tertiary structure of proteins Acr3, ArsC, AioA, and ArsM showed strain C1 exhibits the high activities of arsenite oxidase and arsenate reductase enzymes that are encoded by aioA and arsC genes, respectively. Moreover, strain C1 with arsM gene produced volatile-methylated As-compounds; monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB) in the presence of either As(III) or As(V). In conclusion, the strain C1 has great potential for its application in bioremediation of As-contaminated sites.201728054716
40730.9849Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides.19921328813
40540.9848Characterization of a small plasmid (pMBCP) from bovine Pseudomonas pickettii that confers cadmium resistance. This is the first report of isolation of Pseudomonas pickettii from a normal adult bovine duodenum. This organism was one of several bacteria isolated as part of a study to examine cadmium resistance genes (cad(r)) for use in generating transgenic plants to reclaim cadmium-contaminated soils in Kansas. P. pickettii containing a plasmid of 2.2kb (designated pMBCP) grew in Luria-Bertani broth and agar containing up to 800 microM of cadmium chloride and was resistant to 16 antibiotics. Curing the organism of plasmid revealed that antibiotic resistances were not plasmid-mediated. Low-level cadmium resistance was conferred by the plasmid because uncured organism grew significantly better (P<0.05) at 55 microM compared to cured organism. Both plasmid and chromosomal DNA were probed by DNA-DNA hybridization for the presence of known cadmium resistance genes (cadA, cadC, and cadD from Gram-positive (Staphylococcus aureus), but none were detected. The plasmid had one restriction site each for BamHI, PstI, SmaI, and XhoI; two sites each for HincII, SacI, and SphI; and multiple sites for AluI and XcmI. DNA sequence analyses of the cloned and original plasmids showed a GC content of greater than 60% and no homology to any published sequences in the GenBank, European Bioinformatics Institute, or Japanese Genome Net databases. The DNA sequence is contained in GenBank accession number AF144733. Thus, pMBCP offers low-level cadmium resistance to P. picketttii.200312651180
81650.9846High-Level Nickel Resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry-among other plasmids-a megaplasmid determining resistance to 20 to 50 mM NiCl(2) and 20 mM CoCl(2) (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34.199116348590
521360.9844Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation.202541170963
538170.9842Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG).202438078696
81080.9842Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD(595nm)) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome.202134537868
81990.9841Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE.19892548057
5222100.9841Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene.200919414240
5223110.9841Cloned ermTR Gene Confers Low Level Erythromycin but High Level Clindamycin Resistance in Streptococcus pyogenes NZ131. Objectives: The most common macrolide resistance mechanisms in streptococci are the presence of methylase encoding genes ermB and ermTR or the presence of efflux encoded by mef genes. In the present study we aimed to show the effects of the ermTR gene under isogenic conditions on the activities of macrolides and lincosamides in streptococci. Materials and Methods: Total DNA was extracted from Streptococcus pyogenes C1, and the ermTR gene was amplified with or without the regulatory region using modified primer with insertion of restriction sites to clone in to pUC18. Transformants were selected after electroporation of Escherichia coli DB10. The recombinant plasmids were purified and merged to pJIM2246 to transform Gram positive bacteria. Recombinant pJIM2246 plasmids with the ermTR gene were then introduced into S. pyogenes NZ131 by electroporation. Results: After transformation with ermTR without regulatory region the minimal inhibitory concentration (MIC) for erythromycin and clindamycin increased from ≤0.06 to ≤0.06 to 8 and >128 mg/L, respectively. Induction with erythromycin affected the MICs for clindamycin of S. pyogenes transformed with ermTR with the regulatory region. Double disk testing showed that induction with erythromycin and azithromycin for the S. pyogenes transformed with ermTR, and regulatory regions decreased the clindamycin inhibition zone but not telithromycin. The ermTR gene in isogenic conditions confers low level resistance to erythromycin and high level resistance to clindamycin. Conclusion: The different induction and resistance profiles of ermTR compared to other erm genes suggest that the methylation of ErmTR may be different than well studied methylases.202031971866
403120.9840Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons.19873037534
2446130.9837Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. OBJECTIVES: To investigate mutations in the type II topoisomerase genes in quinolone-resistant mutants selected from bacteria harbouring plasmid-borne qnr genes. METHODS: Mutants were selected by nalidixic acid, ciprofloxacin and moxifloxacin from two Escherichia coli reference strains and corresponding transconjugants harbouring qnrA1, qnrA3, qnrB2 or qnrS1 genes. RESULTS: The proportion of resistant mutants selected by the three quinolones was, respectively, in the same range for qnr-positive transconjugants and reference strains. Only 20% (65/329) of the mutants selected from the transconjugants showed a gyrase mutation, whereas 79% (94/119) of those from the reference strains without a qnr gene did (P < 0.0001). At four times the MIC of the selector quinolone, gyrA mutants represented 49% and 95% of the mutants selected with nalidixic acid, 4% and 94% with ciprofloxacin and 0% and 54% with moxifloxacin for qnr-positive transconjugants and reference strains, respectively. Mutations within gyrA were distributed at codon 87 (D87G, H, N or Y) and at codon 83 (S83L) with three novel mutations (gyrA Ser83stop, gyrA Asp82Asn and gyrB insertion of Glu at 465) and three rare mutations (gyrA Gly81Asp, gyrA Asp82Gly and gyrA Ser431Pro), mainly obtained from reference strains after moxifloxacin selection. Strikingly, none of the mutants selected by moxifloxacin from qnr-positive transconjugants harboured a mutation in the topoisomerase genes. CONCLUSIONS: Topoisomerase mutants are rarely selected by ciprofloxacin and moxifloxacin from strains harbouring qnr. This suggests that the quinolone resistance-determining region domains are protected from quinolones by the Qnr protein and consequently other mechanisms are developed to acquire a further step of fluoroquinolone resistance.200818325893
1400140.9837Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli.202235147175
406150.9836Naturally occurring macrolide-lincosamide-streptogramin B resistance in Bacillus licheniformis. Resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics is widespread and of clinical importance. B. Weisblum and his coworkers have demonstrated that this resistance is associated with methylation of the 23S ribosomal ribonucleic acid of the large ribosomal subunit which results in a diminished affinity of this organelle for these antibiotics (Lai et al, J. Mol. Biol. 74:67-72, 1973). We report that 10 of 15 natural isolates of Bacillus licheniformis, a common soil organism, are resistant to the MLS antibiotics. The properties of this resistance (high level of tolerance for erythromycin, broad cross-resistance spectrum, and inducibility) suggest that resistance is conferred as described above. The resistance determinant from one of these strains was cloned onto a B. subtilis plasmid vector, and the resulting hybrid plasmid (pBD90) was used to prepare radioactive probe deoxyribonucleic acid for hybridization studies. All of the resistance B. licheniformis strains studied exhibited homology with the pBD90 insert. Plasmid pBD90 showed no homology to the following staphylococcal and streptococcal MLS-resistance plasmids: pE194, pE5, pAM77, pI258. Plasmids pE194 and pE5, on the other hand, carry homologous MLS genes but showed no detectable homology to one another in their replication genes. pBD90 specified a 35,000-dalton erythromycin-inducible protein, detectable in minicells, which therefore appears different from the 29,000-dalton inducible resistance protein specified by pE194. We conclude that there are at least three distinct MLS resistance determinants to be found among gram-positive bacteria.19816780509
5873160.9836pDB2011, a 7.6 kb multidrug resistance plasmid from Listeria innocua replicating in Gram-positive and Gram-negative hosts. pDB2011, a multidrug resistance plasmid isolated from the foodborne Listeria innocua strain TTS-2011 was sequenced and characterized. Sequence analysis revealed that pDB2011 had a length of 7641 bp and contained seven coding DNA sequences of which two were annotated as replication proteins, one as a recombination/mobilization protein and one as a transposase. Furthermore, pDB2011 harbored the trimethoprim, spectinomycin and macrolide-lincosamide-streptogramin B resistance genes dfrD, spc and erm(A), respectively. However, pDB2011 was only associated with trimethoprim and spectinomycin resistance phenotypes and not with phenotypic resistance to erythromycin. A region of the plasmid encoding the resistance genes spc and erm(A) plus the transposase was highly similar to Staphylococcus aureus transposon Tn554. The dfrD gene was 100% identical to dfrD found in a number of Listeria monocytogenes isolates. Additionally, assessment of the potential host range of pDB2011 revealed that the plasmid was able to replicate in Lactococcus lactis subsp. cremoris MG1363 as well as in Escherichia coli MC1061 and DH5α. This study reports the first multidrug resistance plasmid in L. innocua. A large potential for dissemination of pDB2011 is indicated by its host range of both Gram-positive and Gram-negative bacteria.201323774482
3008170.9836Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition.200818458128
1751180.9835Strain Characterization of Streptococcus suis Serotypes 28 and 31, Which Harbor the Resistance Genes optrA and ant(6)-Ia. Streptococcus suis causes disease in pigs and is implicated increasingly in human disease worldwide. Although most clinical cases are associated with serotype 2, infections by other serotypes have sometimes been reported. Here, we sequenced the genome of a multidrug-resistant S. suis serotype 28 (strain 11313) and a multidrug-resistant S. suis serotype 31 (strain 11LB5). Strain 11313 was apathogenic in mouse infection models, whereas strain 11LB5 displayed ganglion demyelination, meningeal thickening, congestion, mononuclear cell infiltration, massive proliferation of cortical glial cells, and bacteria (>10(4) CFU/g) in the spinal cord and ganglia in mice. Furthermore, immunohistochemistry found that the heavily infiltrated glial cells were astrocytes. Strain 11313 harbored the resistance genes ant(6)-Ia, erm(B), optrA, tet(l), tet(o), and strain 11LB5 harbored the resistance genes ant(6)-Ia, erm(B), tet(40), tet(o/w/32/o), aac(6')-aph(2″). Mouse studies showed that strain 11LB5 exhibited a similar virulence to serotype 2 strain 700794, highlighting the need for surveillance of the other serotype S. suis isolates, in addition to serotype 2, in farms. This is the first report of the aminoglycoside resistance gene ant(6)-Ia in S. suis from animals. This suggests that S. suis might serve as an antibiotic resistance reservoir, which spreads the resistance gene ant(6)-Ia or optrA to other streptococcal pathogens on farms.202133669225
5383190.9835Draft genome sequence of Acinetobacter haemolyticus strain MUWRP1017 isolated from the pus of a female inpatient at Bwera General Hospital in Uganda. The bacterium Acinetobacter haemolyticus, with a genome size of 3.4 Mb, was isolated from a pus swab of a wound on the left lower limb above the ankle joint of a female patient. This strain carries the antimicrobial resistance genes cephalosporinase blaADC-25, oxallinase blaOXA-264, floR, and sul2 and other resistance and virulence genes.202439162454